Study of Stress, Anxiety and Depression in Type 2 Diabetic Model of Zebrafish (Danio rerio)

Authors

  • Shovit Ranjan Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
  • Praveen Kumar Sharma Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi, Jharkhand 835205, India.

DOI:

https://doi.org/10.48165/

Keywords:

Type 2 Diabetes, Hyperglycemia, Zebrafish, Stress, Anxiety, Depression, Novel tank teST, Light-dark box test

Abstract

Type 2 Diabetes (T2D), which causes  hyperglycemia, affects the central nervous  system, leading to certain neurobehavioral  disorders. These days, zebrafish (Danio rerio) has  emerged as a promising model organism for  experimental studies of neurobehavioral  disorders like stress, anxiety and depression. The  aim of this study was to investigate the effects of  high sucrose induced hyperglycemia or T2D on  stress, anxiety as well as depression like behavior  of zebrafish. Hyperglycemia was induced in  adult zebrafish by immersion in 83.25 mM  sucrose solution for 14 days after performing the  study for survival in sucrose solutions. The  animals were divided into 2 groups in replicates:  control and sucrose-treated hyperglycemic  groups. Afterwards, the behavioral performance  was evaluated in both the groups using novel  tank diving test and light-dark box test.High sucrose induced hyperglycemic group produced  robust anxiogenic effects like increased latency,  reduced exploration in the top of the tank,  increased erratic movements and freezing  behavior in the novel tank diving test and  scototaxis like behavior in the light-dark box test.  Overall, our results confirm that an unfamiliar  environment of high-sucrose induced  hyperglycemia in the zebrafishes can evoke  relatively simple, yet robust stress, anxiety and  depression-like behavioral responses. 

Downloads

Download data is not yet available.

References

Pendse, J., P. V. Ramachandran, J. Na, N. Narisu, J. L. Fink, R. L. Cagan, F. S. Collins and T. J. Baranski, 2013. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics, 14(1): 136.

Ranjan, S. and P. K. Sharma, 2015. Experimental model organisms in type 2 diabetes research: a review. International Journal of Advanced Research, 3(12): 344-356.

Murea, M., L. Ma and B. I. Freedman, 2012. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. The review of diabetic studies: RDS, 9(1): 6. 4. Zon, L. I. and R. T. Peterson, 2005. In vivo drug discovery in the zebrafish. Nature reviews Drug discovery, 4(1): 35-44.

Mueller, T., P. Vernier and M. F. Wullimann, 2004. The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Res., 1011(2): 156-169. 6. Panula, P., V. Sallinen, M. Sundvik, J. Kolehmainen, V. Torkko, A. Tiittula, M. Moshnyakov and P. Podlasz, 2006. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish, 3(2): 235-247.

Alsop, D. and M. M. Vijayan, 2008. Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(3): R711-R719.

Shin, J. T. and M. C. Fishman, 2002. From zebrafish to human: modular medical models. Annual Review of Genomics and Human Genetics, 3(1): 311-340.

Gerlai, R., V. Lee and R. Blaser, 2006. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol. Biochem. Behav., 85(4): 752-761. 10. Borla, M. A., B. Palecek, S. Budick and D. M. O’Malley, 2002. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav. Evol., 60(4): 207-229.

Watkins, J., A. Miklosi and R. J. Andrew, 2004. Early asymmetries in the behaviour of zebrafish larvae. Behav. Brain Res., 151(1): 177-183.

Egan, R. J., C. L. Bergner, P. C. Hart, J. M. Cachat, P. R. Canavello, M. F. Elegante, S. I. Elkhayat, B. K. Bartels, A. K. Tien and D. H. Tien, 2009. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res., 205(1): 38-44.

Kily, L. J., Y. C. Cowe, O. Hussain, S. Patel, S. McElwaine, F. E. Cotter and C. H. Brennan, 2008. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol., 211(10): 1623-1634.

Ninkovic, J. and L. Bally-Cuif, 2006. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 39(3): 262-274.

Cirelli, C. and G. Tononi, 2000. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J. Neurosci., 20(24): 9187-9194. 16. Bass, S. L. and R. Gerlai, 2008. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav. Brain Res., 186(1): 107-117. 17. Karnik, I. and R. Gerlai, 2012. Can zebrafish learn spatial tasks? An empirical analysis of place and single CS–US associative learning. Behav. Brain Res., 233(2): 415-421.

Levin, E. D., Z. Bencan and D. T. Cerutti, 2007. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav., 90(1): 54-58.

Blaser, R., L. Chadwick and G. McGinnis, 2010. Behavioral measures of anxiety in zebrafish (Danio

rerio). Behav. Brain Res., 208(1): 56-62.

Lopez-Patino, M. A., L. Yu, H. Cabral and I. V. Zhdanova, 2008. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav., 93(1): 160-171.

Shimada, T., K. Matsumoto, M. Osanai, H. Matsuda, K. Terasawa and H. Watanabe, 1995. The modified light/dark transition test in mice: evaluation of classic and putative anxiolytic and anxiogenic drugs. General Pharmacology: The Vascular System, 26(1): 205-210.

Hascoet, M., M. Bourin and B. Á. N. Dhonnchadha, 2001. The mouse ligth-dark paradigm: a review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 25(1): 141-166.

Bourin, M. and M. Hascoët, 2003. The mouse light/dark box test. Eur. J. Pharmacol., 463(1): 55-65. 24. Malmberg-Aiello, P., A. Ipponi, A. Bartolini and W. Schunack, 2002. Mouse light/dark box test reveals anxiogenic-like effects by activation of histamine H 1 receptors. Pharmacol. Biochem. Behav., 71(1): 313-318.

Stewart, A., C. Maximino, T. Marques de Brito, A. M. Herculano, A. Gouveia, S. Morato, J. M. Cachat, S. Gaikwad, M. F. Elegante and P. C. Hart, 2011. Neurophenotyping of adult zebrafish using the light/dark box paradigm. Zebrafish neurobehavioral protocols: 157-167.

Ranjan, S. and P. K. Sharma, 2018. Development of High Sugar Induced Hyperglycemia or Type 2 Diabetes in Zebrafish (Danio rerio) Model. Research & Reviews: A Journal of Health Professions, 8(3): 60-66.

Barcellos, L. J. G., F. Ritter, L. C. Kreutz, R. M. Quevedo, L. B. da Silva, A. C. Bedin, J. Finco and L. Cericato, 2007. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture, 272(1): 774-778.

Maximino, C., T. Marques, F. Dias, F. V. Cortes, I. B. Taccolini, P. M. Pereira, R. Colmanetti, R. A. Gazolla, R. I. Tavares and S. T. K. Rodrigues, 2007. A comparative analysis of the preference for dark environments in five teleosts. International Journal of Comparative Psychology, 20(4).

Maximino, C., T. M. De Brito, C. A. G. de Mattos Dias, A. Gouveia and S. Morato, 2010. Scototaxis as anxiety-like behavior in fish. Nature protocols, 5(2): 209-216.

Sackerman, J., J. J. Donegan, C. S. Cunningham, N. N. Nguyen, K. Lawless, A. Long, R. H. Benno and G. G. Gould, 2010. Zebrafish behavior in novel environments: effects of acute exposure to

anxiolytic compounds and choice of Danio rerio line. International journal of comparative psychology/ISCP; sponsored by the International Society for Comparative Psychology and the University of Calabria, 23(1): 43.

Childs, E., C. Hohoff, J. Deckert, K. Xu, J. Badner and H. De Wit, 2008. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology, 33(12): 2791-2800.

El Yacoubi, M., C. Ledent, M. Parmentier, J. Costentin and J.-M. Vaugeois, 2000. The anxiogenic like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A 2A adenosine receptor antagonists. Psychopharmacology, 148(2): 153-163.

Sudakov, S., O. Medvedeva, I. Rusakova and I. Figurina, 2001. Effect of short-term and chronic caffeine intake on rats with various anxiety level. Bulletin of experimental biology and medicine, 132(6): 1177-1179.

Dulawa, S. C., K. A. Holick, B. Gundersen and R. Hen, 2004. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology, 29(7): 1321. 35. Norcross, M., M. Poonam, A. J. Enoch, R.-M. Karlsson, J. L. Brigman, H. A. Cameron, J. Harvey White and A. Holmes, 2008. Effects of adolescent fluoxetine treatment on fear-, anxiety-or stress related behaviors in C57BL/6J or BALB/cJ mice. Psychopharmacology, 200(3): 413. 36. Lowry, C. A., C. A. Lowry, M. W. Hale, C. A. Lowry, M. W. Hale, A. Plant, R. J. Windle, C. A. Lowry, M. W. Hale and A. Plant, 2009. Fluoxetine inhibits corticotropin-releasing factor (CRF)- induced behavioural responses in rats. Stress, 12(3): 225-239.

Szymanska, M., B. Budziszewska, L. Jaworska-Feil, A. Basta-Kaim, M. Kubera, M. Leśkiewicz, M. Regulska and W. Lasoń, 2009. The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats. Psychoneuroendocrinology, 34(6): 822-832.

Published

2020-05-15

How to Cite

Study of Stress, Anxiety and Depression in Type 2 Diabetic Model of Zebrafish (Danio rerio) . (2020). Bulletin of Pure & Applied Sciences- Zoology , 39(1), 25–35. https://doi.org/10.48165/