Bisphenol-A Induced Genotoxicity in Channa punctatus (Bloch)
DOI:
https://doi.org/10.48165/Keywords:
Genotoxicity, Bisphenol-A, BPA, Micronucleus, Comet, SCGEAbstract
Bisphenol A is a high volume, synthetic monomer that has been reported in all environmental matrices. Its structural analogy to Diethylstilbestrol, a high risk estrogen mimic, raises concern about its genotoxic potential. This study investigated the genotoxic potential of Bisphenol-A in the snake headed murrel, Channa punctatus. The effect of three sublethal concentrations of Bisphenol A on C. punctatus was studied for two different durations i.e., 15 days and 30 days. Micronucleus assay of peripheral erythrocytes and comet assay of liver cells were used to estimate the genotoxic potential of Bisphenol-A. An increase in micronucleus frequency was observed in all Bisphenol A exposed groups after both durations. Tail DNA% was significantly higher in liver cells following Bisphenol-A exposure. These results suggest that Bisphenol-A exposure probably causes DNA damage due to double strand breaks. This study highlights the genotoxic potential of Bisphenol A. These results also suggest that micronucleus test and comet assay of C. punctatus tissue can be used as useful tool to estimate the exposure of aquatic fauna to ambient genotoxins.
Downloads
References
Ahmad, I., & Ahmad, M., 2016. Fresh water fish, Channa punctatus, as a model for pendimethalin genotoxicity testing: A new approach toward aquatic environmental contaminants. Environ.
toxicology, 31(11), 1520-1529. doi: https://doi.org/10.1002/tox.22156
Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single cell gel electrophoresis. Food and Chemical Toxicology, 47(3), 650-656. doi: https://doi.org/10.1016/j.fct.2008.12.021
Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single cell gel electrophoresis. Food and Chemical Toxicology, 47(3), 650-656. doi: https://doi.org/10.1016/j.fct.2008.12.021
Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research/Genetic Toxicology, 343(2-3), 121-135. doi: https://doi.org/10.1016/0165-
(95)90078-0
APHA, AWWA and WEF (1998) Standard methods for the examination of water and wastewater, 20th ed. (eds: Clesceri, L. S., Greenberg, A. E., & Eaton, A. D.), American Public Health Association, New York, USA.
Audebert, M., Dolo, L., Perdu, E., Cravedi, J. P., & Zalko, D. (2011). Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Archives of toxicology, 85(11), 1463-1473. doi: https://doi.org/ 10.1007/s00204-011-0721-2
Barsiene, J., Dedonyte, V., Rybakovas, A., Andreikenaite, L., & Andersen, O. K. (2005). Induction of micronuclei in Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus) after treatment with bisphenol A, diallyl phthalate and tetrabromodiphenyl ether 47. Ekologija, 4(1), 1-7.
Canesi, L., & Fabbri, E. (2015). Environmental effects of BPA: focus on aquatic species. Dose-Response, 13(3), 1-14. doi: https://doi.org/10.1177/ 1559325815598304
Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y. L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human
exposure, and toxicity a review. Environmental Science and Technology, 50(11), 5438-5453. doi: https://doi.org/10.1021/acs.est.5b05387
Chen, M. Y., Ike, M., & Fujita, M. (2002). Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environmental Toxicology: An International Journal, 17(1), 80-86. doi: https://doi.org/10.1002/tox.10035
Choi, J. Y., Kim, T. H., Choi, Y. J., Kim, N. N., Oh, S. Y., & Choi, C. Y. (2016). Effects of various LED light spectra on antioxidant and immune response in juvenile rock bream, Oplegnathus fasciatus exposed to bisphenol A. Environmental toxicology and pharmacology, 45, 140-149. doi:
https://doi.org/10.1016/j.etap.2016.05.02 6
Dronkert, M. L., Beverloo, H. B., Johnson, R. D., Hoeijmakers, J. H., Jasin, M., &Kanaar, R. (2000). Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Molecular and cellular biology, 20(9), 3147-3156. doi: https://doi.org/10.1128/MCB.20.9.3147-
2000
Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1-2), 81-95. doi: https://doi.org/10.1016/S0027- 5107(00)00065-8
Fic, A., Sollner Dolenc, M., Filipič, M., & Peterlin Mašić, L. (2013). Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Arhiv za Higijenu Rada i Toksikologiju, 64(2), 189-
doi: https://doi.org/10.2478/10004- 1254-64-2013-2319
Hulak, M., Gazo, I., Shaliutina, A., & Linhartova, P. (2013). In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 158(2), 64-71. doi: https://doi.org/10.1016/j.cbpc.2013.05.00
Jalal, N., Surendranath, A. R., Pathak, J. L., Yu, S., & Chung, C. Y. (2018). Bisphenol A (BPA) the mighty and the mutagenic. Toxicology reports, 5, 76-84. doi:
https://doi.org/10.1016/j.toxrep.2017.12. 013
Jenkins, S., Wang, J., Eltoum, I., Desmond, R., & Lamartiniere, C. A. (2011). Chronic oral exposure to bisphenol A results in a nonmonotonic dose response in mammary carcinogenesis and metastasis in MMTV erbB2 mice. Environmental Health Perspectives, 119(11), 1604-1609. doi: https://doi.org/10.1289/ehp.1103850
Kuiper, G. G., Lemmen, J. G., Carlsson, B. O., Corton, J. C., Safe, S. H., Van Der Saag, P. T., Van Der Burg, B. & Gustafsson, J. A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252- 4263. doi: https://doi.org/10.1210/endo.139.10.6216
Laird, L. M., & Oswald, R. L. (1975). A note on the use of benzocaine (ethyl p aminobenzoate) as a fish anaesthetic. Aquaculture Research, 6(4), 92- 94. doi: https://doi.org/10.1111/j.1365- 2109.1975.tb00168.x
Lalwani, D., Ruan, Y., Taniyasu, S., Yamazaki, E., Kumar, N.J., Lam, P.K., Wang, X., & Yamashita, N. (2020). Nationwide distribution and potential risk of bisphenol analogues in Indian waters. Ecotoxicology and Environmental Safety, 200, 110718, 1-8. doi: https://doi.org/10.1016/j.ecoenv.2020.110 718
Lee, S., Liu, X., Takeda, S., & Choi, K. (2013). Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds: a comparison study employing chicken DT40 cells. Chemosphere, 93(2), 434-440. doi: https://doi.org/10.1016/j.chemosphere.2
05.029
Naik, P., & Vijayalaxmi, K. K. (2009). Cytogenetic evaluation for genotoxicity of bisphenol-A in bone marrow cells of Swiss albino mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), 106-112. doi: https://doi.org/10.1016/j.mrgentox.2009.
010
Nangia, P. (2020a). Effect of bisphenol A on some biochemical parameters of Channa punctatus (Bloch). Journal of Experimental Zoology, India, 23(1), 405-408.
Nangia, P. (2020b). Evaluation of LC50, behavioural and morphological responses of Channa punctatus (Bloch) to bisphenol
A. Journal of Experimental Zoology, India, 23(1), 185-187.
Negintaj, A., Archangi, B., Movahedinia, A., Safahieh, A., & Eskandari, G. (2015). Effects of Bis-Phenol A (BPA) on cellular and molecular levels of yellowfin Seabream (Acanthopagrus latus). Journal of Marine Science and Technology, 13(4), 20-30.
Olive, P. L. (2002). The comet assay. In V. V. Didenko (Eds.), In situ detection of DNA damage (pp. 179-194). Humana Press. Clifton, New Jeresey. doi: https://doi.org/10.1385/1-59259-179-
:179
Palhares, D., & Grisolia, C. K. (2002). Comparison between the micronucleus frequencies of kidney and gill erythrocytes in tilapia fish, following mitomycin C treatment. Genetics and Molecular Biology, 25, 281-284. doi: https://doi.org/10.1590/S1415-
Pandey, A. K., Nagpure, N. S., Trivedi, S. P., Kumar, R., & Kushwaha, B. (2011). Profenofos induced DNA damage in freshwater fish, Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 726(2), 209-214. doi: https://doi.org/10.1016/j.mrgentox.2011.
011
Seachrist, D. D., Bonk, K. W., Ho, S. M., Prins, G. S., Soto, A. M., & Keri, R. A. (2016). A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 59, 167-182. doi: https://doi.org/10.1016/j.reprotox.2015.0
006
Sharma, M., & Chadha, P. (2017). Widely used non-ionic surfactant 4-nonylphenol: showing genotoxic effects in various tissues of Channa punctatus. Environmental Science and Pollution Research, 24(12), 11331-11339. doi: 10.1007/s11356-017- 8759-1
Song, W., Lu, H., Wu, K., Zhang, Z., Lau, E. S. W., & Ge, W. (2020). Genetic evidence for estrogenicity of bisphenol A in zebrafish gonadal differentiation and its signalling mechanism. Journal of Hazardous Materails, 386, 121886. doi: https://doi.org/10.1016/j.jhazmat.2019.12 1886
Sreedevi, N. V., & Chitra, K. C. (2014). Biochemical and genotoxic effects of
octylphenol in hepato-mitochondrial fractions of freshwater fish, Oreochromis mossambicus. Journal of Cellular and Tissue Research, 14(2), 4211-4218.
Takahashi, S., Chi, X.J., Yamaguchi, Y., Suzuki, H., Sugaya, S., Kita, K., Hiroshima, K., Yamamori, H., Ichinose, M., & Suzuki, N. (2001). Mutagenicity of bisphenol A and its suppression by interferon-α in human RSa cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 490(2), 199-207. doi: https://doi.org/10.1016/S1383- 5718(00)00161-3
Tiwari, D., &Vanage, G. (2013). Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility. Reproductive Toxicology, 40, 60-68. doi: https://doi.org/10.1016/j.reprotox.2013.0
013
Tiwari, D., Kamble, J., Chilgunde, S., Patil, P., Maru, G., Kawle, D., Bhartiya, U., Joseph, L., & Vanage, G. (2012). Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 743(1-2), 83-90. doi: https://doi.org/10.1016/j.mrgentox.2011.
023
Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., & Soto, A. M. (2009). Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocrine Reviews, 30(1), 75-95. doi: https://doi.org/10.1210/er.2008-0021
Wang, X., Dong, Q., Chen, Y., Jiang, H., Xiao, Q., Wang, Y., Li, W., Bai, C., Huang, C., & Yang, D. (2013). Bisphenol A affects axonal growth, musculature and motor behavior in developing zebrafish. Aquatic toxicology, 142, 104-113. doi: https://doi.org/10.1016/j.aquatox.2013.07
.011
Xin, L., Lin, Y., Wang, A., Zhu, W., Liang, Y., Su, X., Hong, C., Wan, J., Wang, Y., & Tian, H. (2015). Cytogenetic evaluation for the genotoxicity of bisphenol-A in Chinese hamster ovary cells. Environmental toxicology and pharmacology, 40(2), 524-529. doi: https://doi.org/10.1016/j.etap. 2015.08.002
Yadav, K. K., & Trivedi, S. P. (2009). Chromosomal aberrations in a fish, Channa punctata after in vivo exposure to three heavy metals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 678(1), 7-12. doi: https://doi.org/10.1016/j.mrgentox.2009.
021
Yadav, K. K., & Trivedi, S. P. (2009). Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere, 77(11), 1495-1500. doi: https://doi.org/10.1016/ j.chemosphere.2009.10.022
Yadav, V. (2021). Changes in haematological parameters of Channa punctatus (Bloch) after Bisphenol A exposure and amelioration by vitamin C. Journal of Experimental. Zoology India, 24, 179-185.