Comparative Study of Toxicity Attenuation of Phorate & Chlorpyriphos on Eisenia fetida by Rice Straw Biochar
DOI:
https://doi.org/10.48165/Keywords:
Application rate of biochar, Eisenia fetida, Organophosphates, Earthworm’s uptake, Remediation of soilAbstract
Biochar is an external organic input added in soil as ameliorative agent against soil pollution. In this study, the impact of biochar on Eisenia fetida’s mortality (LC50) of two organophosphates (Phorate and Chlorpyriphos) in the artificial OECD soil was assessed. Acute test was applied to calculate the LC50 of Phorate and chlorpyrifos on the earthworm Eisenia fetida by using artificial soil test. Biochar was derived from rice straw, a major agricultural crop residue at two different pyrolysis temperature 300°C and 500°C with the heating rate of 10°C/min for 3 hours in an inert gas environment with limited supply of oxygen in a tubular muffle furnace. Rice straw biochar was then analyzed physiochemically and morphologically. Results demonstrated that the biochar produced is consistent with available literature. Experiment was set up as per OECD guidelines. Two different biochar RSB300 and RSB500 treatments were applied from 1.5%, 3%, 5%, 6.5%, 8% and 10% application rate for both organophosphates separately to nullify the earthworm’s mortality at LC50. The mortality changes were noted after 14 days exposure of treatments at median lethal concentration of pesticides.LC50 of Phorate and CPF were calculated by probit analysis (p value <.005) and found to be 27.436mg/kg and 99.806 mg/Kg respectively. The outcome of correlation analysis between rate of application of biochar vs mortality (LC50) in Eisenia fetida for Phorate and Chlorpyrifos reported that RSB500 Phorate and RSB500 CPF showed statistically significant difference with p values close to 0 and R square values than RSB300 Phorate and RSB300 CPF.
Downloads
References
Ahmad, M., Rajapaksha, A., Lim, J., Zhang, M., Bolan, N., & Mohan, D. et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2
10.071
Aller, D., Bakshi, S., & Laird, D. (2017). Modified method for proximate analysis of biochars. J Anal Appl Pyrolysis., 124, 335- 342.
https://doi.org/10.1016/j.jaap.2017.01.012 3. Alves, P., Cardoso, E., Martines, A., Sousa, J., &Pasini, A. (2013). Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere, 90(11), 2674-2682.
https://doi.org/10.1016/j.chemosphere.2 012.11.046
Bakırcı GT., YamanAcay DB., Bakırcı, F., Ötleş, S. ,2014. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem, 160, 379–392. https://doi.org/10.1016/j.foodchem.2014.
051
Chandra, S., & Bhattacharya, J. (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod., 215, 1123-1139.
Chen, H., Yang, X., Wang, H., Sarkar, B., Shaheen, S., & Gielen, G. et al. (2020). Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co
contaminated soils: A trial for reclamation and improvement of degraded soils. J. Environ. Manage, 261, 110246. https://doi.org/10.1016/j.jenvman.2020.1
Cox, M., EI-Shafey, E., Pichugin, A., & Appleton, Q. (1999). Preparation and characterisation of a carbon adsorbent from flax shive by dehydration with sulfuric acid. J. Chem. Technol. Biotechnol., 74(11), 1019-1029. https://doi.org/10.1002/(sici)1097-466
(199911)74:11<1019::aid-jctb152>
0.co;2-n
Denyes, M., Langlois, V., Rutter, A., & Zeeb, B. (2012). The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci. Total Environ., 437, 76-82. https://doi.org/10.1016/j.scitotenv.2012.0 7.081
Devi, S., Gupta, C., Jat, S., & Parmar, M. (2017). Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric., 2(1). doi: 10.1515/opag-2017-0053
Erdem H. (2021). The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi J. Biol. Sci., 28(7), 3965–3971. https://doi.org/10.1016/j.sjbs.2021.04.016
Gupta, R, D., Chakravorty, PP., Kaviraj, A., 2010. Studies on relative toxicities of six insecticides on epigeic earthworm, Perionyx excavatus. Bull. Environ. Contam.
Toxicol. 85,83–86.
Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D., Cornelissen, G., 2013. Thesorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shelland corn cob biochars. Chemosphere 91, 1612–1619.
Han, J., Huang, Y., Meng, J., Fan, C., Yang, F., Tan, H., & Zhang, J. (2021). Exposure of earthworm (Eisenia fetida) to rice straw biochar: Ecotoxicity assessments for soil
amended programmes. The Science of the total environment, 794, 148802. https://doi.org/10.1016
Hossain, N., Nizamuddin, S., Griffin, G., Selvakannan, P., Mubarak, N., &Mahlia, T. (2020). Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci. Rep., 10(1). https://doi.org/10.1038/s41598-020-
-3
Intani K, Latif S, Cao Z, Müller J. (2018). Characterisation of biochar from maize residues produced in a self-purging pyrolysis reactor. Bioresour Technol. 265, 224-235. doi:10.1016/j.biortech.2018.05.103
Itoh T, Fujiwara N, Iwabuchi K et al. (2020). Effects of pyrolysis temperature and feedstock type on particulate matter emission characteristics during biochar combustion. Fuel Process. Technol. 204, 106408. doi:10.1016/j.fuproc.2020.106408
Jiang, J., Peng, Y., Yuan, M., Hong, Z., Wang, D., & Xu, R. (2015). Rice Straw Derived Biochar Properties and Functions as Cu(II) and Cyromazine Sorbents as Influenced by Pyrolysis Temperature. Pedosphere, 25(5), 781-789. https://doi.org/10.1016/s1002-
(15)30059-x
Jiang, J., Xu, R., Jiang, T., & Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229-230, 145- 150.
https://doi.org/10.1016/j.jhazmat.2012.05 .086
Jovana, M., Tanja, M., & Mirjana, S. (2014). Effects of three pesticides on the earthworm Eisenia fetida (Savigny 1826) under laboratory conditions: Assessment of mortality, biomass and growth inhibition. Eur. J. Soil Biol., 62, 127-131.
https://doi.org/10.1016/j.ejsobi.2014.03.0 03
Khorram, M., Zheng, Y., Lin, D., Zhang, Q., Fang, H., & Yu, Y. (2016). Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). J. Soils Sediments, 16(10), 2439-2448. https://doi.org/10.1007/s11368-016-1407-
Kumar S, Singh SM (2016). Artificial Soil Test of Phorate Eisenia fetida. J Environ Anal Toxicol, 6, 391. doi :10.4172/2161- 0525.1000391
Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144. https://doi.org/10.1038/447143a
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction (33-46). Routledge.
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427. https://doi.org/10.1007/s11027-005-9006- 5
Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., & Yu, G. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One, 8(6), e65949.
Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y., & Niazi, N. et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage, 186, 285-292. doi: 10.1016/j.jenvman.2016.05.068
Malev, O., Contin, M., Licen, S., Barbieri, P., & De Nobili, M. (2015). Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils. Environ. Sci. Pollut. Res., 23(4), 3491-3502. https://doi.org/10.1007/s11356-015-5568-
Mohan, D., Sarswat, A., Ok, Y., & Pittman, C. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review.
Bioresour Technol., 160, 191-202. https://doi.org/10.1016/j.biortech.2014.0 1.120
Nartey, O.D., & Zhao, B. (2014). Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering, 2014, 1-12.
Park, J., Lee, Y., Ryu, C., & Park, Y. (2014). Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresour Technol., 155, 63-70. https://doi.org/10.1016/j.biortech.2013.1
084
Pereira, P., Soares, L., Júnior, S., Saggioro, E., & Correia, F. (2019). Sub-lethal effects of the pesticide imazalil on the earthworm Eisenia andrei: reproduction, cytotoxicity, and oxidative stress. Environ. Sci. Pollut. Res., 27(27), 33474-33485. https://doi.org/10.1007/s11356-019-
-3
Qi, F., Lamb, D., Naidu, R., Bolan, N., Yan, Y., & Ok, Y. et al. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ., 610-611, 1457-1466. https://doi.org/10.1016/j.scitotenv.2017.0 8.228
Salam, A., Bashir, S., Khan, I., & Hu, H. (2020). Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: an integrated spectroscopic examination. Biomass Convers. Biorefin., https://doi.org/10.1007/s13399-020-
-z
Simmons, A., Cowie, A., & Waters, C. (2021). Pyrolysis of invasive woody vegetation for energy and biochar has climate change mitigation potential. Sci. Total Environ., 770, 145278. https://doi.org/10.1016/j.scitotenv.2021.1
Singh, R., Babu, J., Kumar, R., Srivastava, P., Singh, P., & Raghubanshi, A. (2015). Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. Ecol. Eng., 77, 324-347. https://doi.org/10.1016/j.ecoleng.2015.01
.011
Song, Y., Wang, F., Bian, Y., Kengara, F., Jia, M., Xie, Z., & Jiang, X. (2012). Bioavailability assessment of
hexachlorobenzene in soil as affected by wheat straw biochar. J. Hazard. Mater., 217- 218, 391-397. doi: 10.1016/j.jhazmat.2012.03.055
Soydan, K D., Turgut, N., Yalçın, M., Turgut, C., & Karakuş, P. (2021). Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environ. Sci. Pollut. Res., 28(22), 27511-27519.
https://doi.org/10.1007/s11356-021- 12580-y
Tripathi, M., Sahu, J., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev., 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122
Wang, F., Ji, R., Jiang, Z., & Chen, W. (2014). Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. Environ. Pollut., 186, 241-247. https://doi.org/10.1016/j.envpol.2013.12.
Wang, F., Zeng, Q., Su, W., Zhang, M., Hou, L., & Wang, Z. L. (2019). Adsorption of bisphenol A on peanut shell biochars: The effects of surfactants. Journal of Chemistry, 2019.
Wang, Y., Cang, T., Zhao, X., Yu, R., Chen, L., Wu, C., & Wang, Q. (2012). Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol. Environ., Saf., 79, 122-128. https://doi.org/10.1016/j.ecoenv.2011.12.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw derived biochar for soil amendment. Biomass and Bioenergy, 47, 268-276. doi: 10.1016/j.biombioe.2012.09.034Sci. Total Environ., 134767. doi:10.1016/
j.scitotenv.2019.134767
Yakout, S. (2017). Physicochemical Characteristics of Biochar Produced from Rice Straw at Different Pyrolysis Temperature for Soil Amendment and Removal of Organics. Proceedings Of The National Academy Of Sciences, India Section A: Physical Sciences, 87(2), 207-214. doi: 10.1007/s40010-017-0343-z
Yang, X., Ying, G., Peng, P., Wang, L., Zhao, J., & Zhang, L. et al. (2010).
Influence of Biochars on Plant Uptake and Dissipation of Two Pesticides in an Agricultural Soil. J Agr Food Chem., 58(13), 7915-7921. doi: 10.1021/jf1011352
Ye, L., Zhang, J., Zhao, J., Luo, Z., Tu, S., & Yin, Y. (2015). Properties of biochar obtained from pyrolysis of bamboo shoot shell. J Anal Appl Pyrolysis., 114, 172-178. doi: 10.1016/j.jaap.2015.05.016
Yu, X., Ying, G., &Kookana, R. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76(5), 665-671.
Zhang, Q., Saleem, M., & Wang, C. (2019). Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ., 671, 52-58. https:// doi.org/10.1016/j.scitotenv.2019.03.364
Zheng, W., Sharma, B., & Rajagopalan, N. (2010). Using Biochar as a Soil Amendment for Sustainable Agriculture.
Zhou, S., Duan, C., Fu, H., Chen, Y., Wang, X., & Yu, Z. (2007). Toxicity assessment for chlorpyrifos-contaminated soil with three different earthworm test methods. J Environ Sci.,19(7), 854-858. https://doi.org/10.1016/s1001-
(07)60142-9
Zhou, S., Duan, C., Michelle, W., Yang, F., & Wang, X. (2011). Individual and combined toxic effects of cypermethrin and chlorpyrifos on earthworm. J Environ Sci., 23(4), 676-680. https:// doi.org/10.1016/s1001-0742(10)60462-7
Wang, D., Zhang, W., Hao, X., & Zhou, D. (2013). Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environmental science & technology, 47(2), 821-828.