Population Dynamics of Earthworm Species Amynthas alexandri (Annelida: Megascolecidae) in Two Different Land-Use Systems of Kumaun Himalayas
DOI:
https://doi.org/10.48165/Keywords:
Amynthas alexandri, population dynamics, cultivated soil, Grassland, vertical distributionAbstract
Comparative study on population dynamics of earthworm Amynthas alexandri carried out in two different land-use systems, i.e., grassland soil at Governor’s Golf field Nainital and croplands at Khurpatal and Chanfi, Nainital. Earthworms from different soil systems were collected by hand sorting and preserved in formalin for further investigations. Soil analysis revealed that the C: N ratio decreased with increasing depth in land-use systems (croplands and Grassland). The highest worm density was recorded during the rainy season in the Grassland (67.3m 2), followed by croplands (28.1 m-2). Biomass during the Rainy season was recorded higher in grassland soil (11.5 g m-2) than in the croplands (8.7 g m-2).
Downloads
References
Lavelle, P. (1988). Earthworm activities and the soil system. Biol Fertil Soils. 6, 237- 251.
Edward, C. A and Lofty, J. R. (1978). The influence of Arthropods and earthworms upon root growth of direct drilling cereals. J.Appl. Ecol. 15, 789-795.
Edward, C. A. (1983). Utilization of earthworm composts as plant growth media. In: Tomati, U. and A. Grappelli (eds) International Symposium on Agricultural and Environmental Prospects in Earthworm. Rome, Italy. 57-62.
Lee, K. E. (1985). Earthworms their ecology and relationships with soils and land use (London: Academic Press).
Barois, I and Lavelle, P. (1986). Changes in respiration rate and some physico chemical properties of a tropical soil during transit through Pontoscolexcorethrurus
(Glossoscolecidae, Oligochaeta). Soil Biol Biochem. 18, 539–541.
Blanchart, E., Albrecht, A., Alegre, J., Duboisset, A., Villenave, C., Pashanasi, B., Lavelle, P and Brussaard, L. (1999). Effects of earthworms on soil structure and physical properties, in Lavelle, P., Brussaard, L and Hendrix, P.F., Eds., Earthworm Management in Tropical Agroecosystems, CAB International, Wallingford, U.K.
Martin, A. (1991). Short- and long-term effects of the endogeic earthworm Millsoniaanomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas on soil organic matter. Biol. Fertil. Soils. 11, 234-238.
Lavelle, P and Martin, A. (1992). Small scale and large-scale effects, of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem. 24, 1491-1498.
Dash, M. C and Patra, U. C. (1977). Density, biomass and energy budget of a tropical earthworm population from a grassland site in Orissa, India. Ind.Rev. Ecol.Biol.Sol. 14, 461-471.
Mishra, P. C and Dash, M. C. (1984). Population dynamics and respiratory
metabolism of earthworms population in a subtropical dry woodland of western Orissa, India. Trop. Ecol. 25, 103-116.
Kotpal R L and Bali. (1975). Concepts of ecology. Book; 1st edition; Vishal Publications. pp 229-252.
Julka, J. M. (1986a). Earthworm resources in India. In: Proc. Nat. Sem. Org. Waste Utiliz. Vermicomp. Past B. Worms and vermicomposting. (ed. M.C. Dash, B.K. Senapati, and P.C. Mishra) pp. 1-7. Sambalpur University, Orissa.
Julka, J. M. (1986b). The Earthworm Ecology and the adjacent countries (Megadrile Oligochaeta). Zoological Survey of India, Calcutta, India, pp.400.
Kaushal, B. R and Bisht, S. P. S. (1994). Population dynamics of the earthworm Amynthas alexandri (Annelida, Megascolecidae) in a Kumaun Himalayan pasture soil. Biol. Fertil. Soils. 17, 9-13.
Kaushal, B. R., Bisht S. P. S and Kalia S. (1995). Population dynamics of the earthworm Amynthas alexandri (Megascolecidae: Annelida) in cultivated soils of the Kumaun Himalayas. Appl. Soil Ecol. 2, 125-130.
Mani, M and Thirumagal, A. (2017). Literature growth and development of "earthworm": A bibliometric analysis. Library Philosophy and Practice (e journal). 1583. http://digitalcommons.unl.edu/libphilpr ac/1583
Goswami, R and Mondal, K. C. (2015). A study on earthworm population and diversity with special reference to physicochemical parameters in different habitats of south 24 parganas district in West Bengal. Rec. zool. Surv. India. 115, 31- 38.
Ribeiro, R. A., Giannini, T. C., Gastauer, M., Awade, M., & Siqueira, J. O. (2018). Topsoil application during the rehabilitation of a manganese tailing dam increases plant taxonomic, phylogenetic andfunctional diversity. Journal of Environmental Management. 227, 386–394.
Arnone, A. J and Zaller, G. J. (2014). Earthworm effect so native grassland root system dynamic sunder natural and increased rainfall. Plant Science Article. 5(152), 1-8.
Phillips, H. R. P., Guerra, C. A., Bartz, M. L. C. et al. (2019). Global distribution of
earthworm diversity. Science. 366 (480– 485), 1-6.
Singh, S., Sharma, A., Khajuria, K., Singh J andVig A. P. (2020). Soil properties changes earthworm diversity indices in different agro-ecosystem. BMC Ecology. 20(27), 2-14.
Li, Y., Wang J and Shao, M. (2021). Assessment of earthworms as an indicator of soil degradation: A case-study on loess soils. Land degradation and development. Doi: https://doi.org/10.1002/ldr.3928.
Sohrabi, H., Jourgholami, M., Jafari, M., Tavankar, F., Venanzi, R andPicchio, R. (2021). Earthworms as an Ecological Indicator of Soil Recovery after Mechanized Logging Operations in Mixed Beech Forests. Forests. Doi: https://dx.doi.org/10.3390/ f12010018.
Nahberger,T. U., Benucci, G. M. N., Kraigher, H andGrebenc, T. (2021). Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.) Scientifc Reports. 11:6167 Doi: https://doi.org/10.1038/s41598-021-
-8.
Jackson, M. L. (1958). Soil chemical analysis. Prentice- Hall, Englewood cliffs, NJ.
Mishra, R. (1968) ecology workbook. Oxfort and IBH publishing company, Calcutta.
Jackson, B. L. J and During, C. (1979). Studies of slowly available potassium in soils of New Zealand. Plant Soil. 51, 197– 204.
Martinucci, G and Sala, G. (1979). Lumbricids and soil types in prealpine and alpine woods. Bolletino Di Zoologia. 46(4), 279–297.
Tsukamoto, J. (1985). Soil macro-animals on a slope in a deciduous broadleaved forest. II. Earthworm of Lumbricidae and Megascolecidae. Jpn J Ecol. 35, 37-48.
Kale, R. D and Karmegam, N. (2010). The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems. Applied
and Environmental Soil Science. p.16. Doi:10.1155/2010/414356.
Kale, R. D and Krishnamoorthy, R.V. (1982). Distribution and abundance of earthworms in Banglore. Proc. Ind. Acad. Sci. 87B, 23-25.
Mohanjit. (1986). Ecophysiological studies on earthworms in relation to conversion of soil nutrients. Ph.D thesis, HAU, Hissar, India 288 pp.
Low, A. J. (1972). The effect of cultivation on the structure and other physical characteristics of Grassland and arable soils. J. Soil Sci. 363-380.
Evans, A.C and McGuild, W. J. (1948). Studies on relationships between earthworm and soil fertility. V. Field population. Ann. Appl. Biol. 35, 485-493.
Nordstrom, A. (1975). Seasonal activity of Lumbricids in southern Sweden. Oikos. 26, 307-315.
Calvin, E. and Cosin, D.J.D. (1985). Lombrices de tierra del valle del Tambre (Galicia, Espans). 1. Relation con los factores del suelo. Rev. Ecol. Biol. Sol. 22(3), 341-351.
Nordstrom, S andRundgren S. (1973). Association of Lumbricids in Southern Sweden. Pedobiologia. 13, 301–326.
Bouche, M. B. (1977d). Production et flux d'energie des lombrics dans les sites du P.B. 1 Lab. Zool. INRA, Rouen, 4, 74-94.
Aina, P. O. (1984). Contribution of earthworms to porosity and water infiltration in a tropical soil under forest and long-term cultivation. Pedobiologia. 26, 131-136.
Mato, S., Mascato, R., Trigo, D and Cosin, D. J. D. (1988). Vertical distribution in soil of earthworms in Sierra del Caurel. 1. Species and vegetation types. Pedobiologia. 32, 193-200.
Mccredie, T. A., Parker, C. A and Abbot, I. (1992). Population dynamics of the earthworm Aporrectodea trapezoides (Annelida: Lumbricidae) in Western Australian pasture soil. Biol. Fertil. Soils. 12, 285-289.