Assessment of 8-hydroxy-2′deoxyguanosine Activity and Histopathological Alteration in Liver and Intestine of Zebrafish (Daniorerio) Exposed to Arsenic Trioxide
DOI:
https://doi.org/10.48165/Keywords:
Arsenic Trioxide, Histopathology, Immunofluroscence, 8-OHdG, ZebrafishAbstract
The present study is aimed at assessing the chronic toxic effects of arsenic trioxide on liver and intestine of the zebrafish. For this purpose, histopathological changes in the liver and intestine tissues of adult zebrafish exposed to waterborne arsenic trioxide concentrations (50ppb and 500ppb respectively) for9days evaluated. Activation of 8- hydroxy-2′-deoxyguanosine (8-OHdG) was also assessed by immunofluorescence assay. We observed severe histopathological alterations, including cellular degeneration, vacuolization of hepatocytes, and an increase in the hepatic plate in the liver. Histopathological changes in the intestine includes vacuolization of the enterocytes, hyperplasia of goblet cells, displacement of the lamina propria, and disruption of the apical cytoplasm of epithelial cells that cover the intestinal villi were observed. Strong signs of immunofluorescence reaction for 8-OHdG in the exposed liver and intestine tissues in a dose-dependent manner has also been detected. Results of the study indicate that toxicity of arsenic trioxide lead to crucial histopathological alteration and induce oxidative DNA damage in both liver and intestine of zebrafish.
Downloads
References
Agency for toxic substances and disease registry (ATSDR), 2013. Toxicological Profilefor Arsenic. U.S. Department of Health and Human Services, Public Health Services, Atlanta, GA. Available at:http://www.atsdr.cdc.gov/spl/index.
html(Accessed 8 June 2019).
Ahmed MK, Habibullah-Al-Mamun M, Parvin E, Akter MS, & Khan MS. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromismossambicus). Experimental
and toxicologic pathology: official journal of the Gesellschaftfur Toxikologische Pathologie, 65(6), 903–909. Available at:https://doi.org/10.1016/j.etp.2013.01.
(Accessed 01 December 2020).
Arslan H, Özdemir S, &Altun S. (2017). Cypermethrintoxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinuscarpio L.). Chemosphere, 180, 491–499.Available at:https://doi.org/10.1016/j.chemospher
e.2017.04.057(Accessed 25 November 2020).
BabichR. & Van Beneden RJ. (2019). Effect of arsenic exposure on early eye development in zebrafish (Daniorerio). Journal of applied toxicology: JAT, 39(6), 824–831.Available at:https://doi.org/10.1002/jat.3770(Acce
ssed 11 March 2020).
Bagnyukova TV, Luzhna LI, Pogribny IP &Lushchak VI. (2007). Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environmental and molecular mutagenesis, 48(8), 658–665. Available at:https://doi.org/10.1002/em.20328(Ac
cessed 20 March 2021) .
Bambino K, & Chu J. (2017). Zebrafish in Toxicology and Environmental Health. Current topics in developmental biology, 124, 331–367. Available at: https://doi.org/10.1016/bs.ctdb.2016.10.
(Accessed 02 January 2021).
Baran A, Yildirim S, Ghosigharehaghaji A, Bolat İ, Sulukan E, &Ceyhun SB. (2021). An approach to evaluating the potential teratogenic and neurotoxic mechanism of BHA based on apoptosis induced by oxidative stress in zebrafish embryo (Daniorerio). Human & experimental toxicology, 40(3), 425–438. Available
at:https://doi.org/10.1177/096032712095 2140(Accessed 20 April 2021).
Begum A, Mustafa A, Amin MN, Banu N, &Chowdhury T. (2014). Accumulation and histopathological effects of arsenic in tissues of shingi fish (Stinging Catfish) Heteropneustesfossilis (Bloch, 1794). Journal of the Asiatic Society of Bangladesh, Science, 39(2), 221- 230Available
at:https://doi.org/10.3329/jasbs.v39i2.17 861.(Accessed 11 April 2021).
Bertotto LB, Catron TR, & Tal T. (2020). Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology, 76, 235–244. Available at: https://doi.org/10.1016/j.neuro.2019.11.
(Accessed 4 March 2021).
Buddington RK, Krogdahl A, Bakke Mckellep AM. (1997). The intestines of carnivorous fish: Structure and functions and the relations with diet. Actaphysiologica Scandinavica. Supplementum. 638. 67-80. Available at:
DOI:10.3329/jasbs.v39i2.17861(Accessed 4 March 2021).
Bureau of Indian Standard (BIS), 2010. Ground Water Quality in Shallow Aquifers of India. Central Ground Water Board, Ministry of Water Resources. Government of India, Faridabad. Available
at:http://cgwb.gov.in/documents/water quality/gw_quality_in_shallow_aquifers. pdf(Accessed 14 January 2018).
Carvan MJ, Gallagher EP, Goksøyr A, Hahn ME, & Larsson DG. (2007). Fish models in toxicology. Zebrafish, 4(1), 9–20. Available at: https://doi.org/10.1089/zeb.2006.9998(A
ccessed 11 March 2019)
Dahan D, Jude BA, Lamendella R, Keesing F, & Perron GG. (2018). Exposure to Arsenic Alters the Microbiome of Larval Zebrafish. Frontiers in microbiology, 9, 1323. Available at: https://doi.org/10.3389/fmicb.2018.0132
(Accessed 4 March 2021).
Dipp VR, Valles S, Ortiz-Kerbertt H, Suarez JV, & Bardullas U. (2018). Neurobehavioral Alterations in Zebrafish Due to Long-Term Exposure to Low Doses of Inorganic Arsenic. Zebrafish, 15(6), 575–585. Available at: https://doi.org/10.1089/zeb.2018.1627.
(Accessed 10 January 2019).
Dong WQ, Sun HJ, Zhang Y, Lin HJ, Chen JR, & Hong H C (2018). Impact on growth, oxidative stress, and apoptosis related gene transcription of zebrafish after exposure to low concentration of arsenite. Chemosphere, 211, 648–652. Available at:
https://doi.org/10.1016/j.chemosphere.2 018.08.010(Accessed 16 July 2019).
Dubey NP, Jain SK, Maheshwari HS. (2014) Chronic study of arsenic trioxide-induced hepatotoxicity in relation to arsenic liver accumulation in rats, Toxicological & Environmental Chemistry, 96(3), 491-499.A vailable at: DOI: 10.1080/02772248.2014.949129(Acce
ssed 20 July 2020).
Environmental Protection Agency, US (2001). Drinking Water Requirements for States and Public Water Systems, Drinking Water Arsenic Rule History, USA. Available at: https://www.epa.gov/dwreginfo/drinki
ng-water-arsenic-rule-history(Accessed 14 January 2018).
Faita F, Cori L, Bianchi F, &Andreassi MG. (2013). Arsenic-induced genotoxicity and genetic susceptibility to arsenic related pathologies. International journal of environmental research and public health, 10(4), 1527–1546. Available at:
https://doi.org/10.3390/ijerph10041527( Accessed 2 June 2020).
Flora SJ, (2011). Arsenic-induced oxidative stress and its reversibility. Free radical biology & medicine, 51(2), 257–281. Available at: https://doi.org/10.1016/j.freeradbiomed .2011.04.008(Accessed 12 January 2019).
Hamdi M, Sanchez MA, Beene LC, Liu Q, Landfear SM, Rosen BP, & Liu Z. (2009). Arsenic transport by zebrafish aquaglyceroporins. BMC molecular biology, 10, 104. (Accessed 3 January 2021)Available at:
https://doi.org/10.1186/1471-2199-10- 104
Hong Y, Piao F, Zhao Y, Li S, Wang Y, & Liu P. (2009). Subchronic exposure to arsenic decreased Sdha expression in the brain of mice. Neurotoxicology, 30(4), 538– 543. Available at:
https://doi.org/10.1016/j.neuro.2009.04. 011. (Accessed 1 April 2018).
Hu, Y., Li, J., Lou, B., Wu, R., Wang, G., Lu, C., Wang, H., Pi, J., &Xu, Y. (2020). The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules, 10(2), 240. Available at: https://doi.org/10.3390/biom10020240(
Accessed 20 January 2021).
Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ,
&Valko M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of applied toxicology: JAT, 31(2), 95–107. Available at: https://doi.org/10.1002/jat.1649(Accesse
d 20 February 2018)
Jung D, Adamo MA, Lehman RM, Barnaby R, Jackson CE, Jackson BP, Shaw JR, & Stanton BA. (2015). A novel variant of aquaporin 3 is expressed in killifish (Fundulusheteroclitus)
intestine. Comparative biochemistry and physiology. Toxicology & pharmacology: CBP, 171, 1–7. Available at:
https://doi.org/10.1016/j.cbpc.2015.03.0 01(Accessed 11 December 2020).
Khafaga AF, Naiel M, Dawood M, & Abdel-Latif H. (2020). Dietary Origanumvulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinuscarpio). Aquatic toxicology (Amsterdam, Netherlands), 228, 105624. Available at: https://doi.org/10.1016/j.aquatox.2020.1
(Accessed 19 February 2021).
Khan FR & Alhewairini SS. (2018). Zebrafish (Daniorerio) as a Model Organism, Current Trends in Cancer Management. Intech Open, DOI: 10.5772/intechopen.81517. Available at: https://www.intechopen.com/books/cu
rrent-trends-in-cancer
management/zebrafish-em-danio-rerio em-as-a-model-organism(Accessed 18 May 2021).
Klancko RJ, (2003) Heavy Metals in the Environment. Sarkar B, ed. 2002. Marcel Dekker, New York. Environmental Practice, 5(2), 180-181, ISBN: 0-8247- 06307Available
at: DOI: 10.1017/S1466046603231124 (Accessed 12 June 2019).
Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET, & Gong Z. (2006). Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiological genomics, 27(3), 351–361. Available at: https://doi.org/10.1152/physiolgenomic
s.00201.2005 (Accessed 16 November 2020).
Li C, Li P, Tan YM, Lam SH, Chan EC, & Gong Z. (2016). Metabolomic Characterizations of Liver Injury Caused by Acute Arsenic Toxicity in Zebrafish. PloS one, 11(3), e0151225. Available at: https://doi.org/10.1371/journal.pone.01
(Accessed 11 April 2021).
Liu FJ, Cobb GP, Anderson TA, Cheng QQ, & Theodorakis CW. (2006). Uptake, accumulation and depuration of sodium perchlorate and sodium arsenate in zebrafish
(Daniorerio). Chemosphere, 65(10), 1679– 1689. Available at: https://doi.org/10.1016/j.chemosphere.2 006.05.030(Accessed 3 January 2021).
Maurya SK & Mishra R. (2017). Pax6 interacts with Iba1 and shows age associated alterations in brain of aging mice. Journal of chemical neuroanatomy, 82, 60–64. Available at: https://doi.org/10.1016/j.jchemneu.2017 .05.002(Accessed 11 April 2021).
Mondal P, Shaw P, Bandyopadhyay A, Dey Bhowmik A, Chakraborty A, Sudarshan M, & Chattopadhyay A. (2019). Mixture effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Daniorerio) liver: Expression pattern of Nrf2 and related xenobiotic metabolizing enzymes. Aquatic toxicology (Amsterdam, Netherlands), 213, 105219 Available at: https://doi.org/10.1016/j.aquatox.2019.0 6.002. (Accessed 20 February 2020).
Mondal P, Shaw P, Dey Bhowmik A, Bandyopadhyay A, Sudarshan M, Chakraborty A, & Chattopadhyay A. (2021). Combined effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Daniorerio) brain: Alterations in stress marker and apoptotic gene expression. Chemosphere, 269, 128678. Available at: https://doi.org/10.1016/j.chemosphere.2 020.128678(Accessed 28 May 2021).
Painefilú JC, Pascual MM, Bieczynski F, Laspoumaderes C, González C, Villanueva S, & Luquet CM. (2019). Ex vivo and in vivo effects of arsenite on GST and ABCC2 activity and expression in the middle intestine of the rainbow trout Oncorhynchusmykiss. Comparative
biochemistry and physiology. Toxicology & pharmacology: CBP, 225, 108566.Available at: https://doi.org/10.1016/j.cbpc.2019.1085 66(Accessed 20 February 2021).
Pei J, Zuo J, Wang X, Yin J, Liu L, & Fan W. (2019). The Bioaccumulation and Tissue Distribution of Arsenic Species in Tilapia. International journal of environmental research and public health, 16(5), 757. Available at: https://doi.org/10.3390/ijerph16050757(
Accessed 20 February 2020).
Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, &Lemos B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. The Science of the total environment, 662, 246–253. Qiao Available at: https://doi.org/10.1016/j.scitotenv.2019.
245(Accessed 18 January 2021).
Ratn A, Prasad R, Awasthi Y, Kumar M, Misra A, & Trivedi SP. (2018). Zn2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channapunctatus (Bloch, 1793). Ecotoxicology and environmental safety, 151, 10–20.Available at: https://doi.org/10.1016/j.ecoenv.2017.12 .058 (Accessed 19 February 2021).
Roy S & Bhattacharya S. (2006). Arsenic induced histopathology and synthesis of stress proteins in liver and kidney of Channapunctatus. Ecotoxicology and environmental safety, 65(2), 218–229. Available at:
https://doi.org/10.1016/j.ecoenv.2005.07 .005(Accessed 20 January 2018).
Sarkar S, Mukherjee S, Chattopadhyay A, & Bhattacharya S. (2014). Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicology and environmental safety, 107, 1–8. Available at:https://doi.org/10.1016/j.ecoenv.2014. 05.012(Accessed 22 August 2017).
Sarkar S, Mukherjee S, Chattopadhyay A, & Bhattacharya S. (2017). Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicology and environmental safety, 135, 173–182. Available at:
https://doi.org/10.1016/j.ecoenv.2016.09 .025(Accessed 28 December 2019).
Seok SH, Baek MW, Lee HY, Kim DJ, Na YR, Noh KJ, Park SH, Lee HK, Lee BH, Ryu DY, & Park JH. (2007). Arsenite induced apoptosis is prevented by antioxidants in zebrafish liver cell line. Toxicology in vitro: an international journal published in association with BIBRA, 21(5), 870–877.Available at: https://doi.org/10.1016/j.tiv.2007.02.011
(Accessed 7 March 2019).
Shi L, Hu X, Wang N, Liang H, Wu C, & Cao H. (2020). Histopathological examination and transcriptome analyses to assess the acute toxic effects of arsenite exposure on rare minnows (Gobiocyprisrarus). Ecotoxicology (London, England), 29(5), 613–624. Available at: https://doi.org/10.1007/s10646-020-
-3(Accessed 16 January 2021).
Shi L, Hu X, Wang N, Liang H, Wu C, & Cao H. (2020). Histopathological examination and transcriptome analyses to assess the acute toxic effects of arsenite exposure on rare minnows (Gobiocyprisrarus). Ecotoxicology (London, England), 29(5), 613–624. Available at: https://doi.org/10.1007/s10646-020-
-3(Accessed 16 January 2021).
Sims KC, Schwendinger KL, Szymkowicz DB, Swetenberg JR, & Bain LJ. (2019). Embryonic arsenic exposure reduces intestinal cell proliferation and alters hepatic IGF mRNA expression in killifish (Fundulusheteroclitus). Journal of toxicology and environmental health. Part A, 82(2), 142–156. Available at: https://doi.org/10.1080/15287394.2019.1
(Accessed 6 February 2021).
Sun HJ, Zhao WJ, Teng XQ, Shu SP, Li SW, Hong HC, & Guan DX. (2020). Antioxidant responses and pathological changes in the gill of zebrafish (Daniorerio) after chronic exposure to arsenite at its reference dose. Ecotoxicology and environmental safety, 200, 110743.A vailable at: https://doi.org/10.1016/j.ecoenv.2020.11
(Accessed 5 April 2021).
Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, Xie M, Gao C, Ye Y, Duan M, Zhou Z. (2019). The use of zebrafish (Daniorerio) as biomedical models, Animal Frontiers, 9(3), 68–77. Available at:
https://doi.org/10.1093/af/vfz020(Acce ssed 11 April 2021).
Topal A, Alak G, Ozkaraca M, Yeltekin AC, Comaklı S, Acıl G, Kokturk M, &Atamanalp M. (2017). Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2- deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175, 186–191. Available at:
https://doi.org/10.1016/j.chemosphere.2 017.02.047(Accessed 20 April 2020).
Ventura-Lima J, Bogo MR, &Monserrat JM. (2011). Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicology and environmental safety, 74(3), 211–218. Available at: https://doi.org/10.1016/j.ecoenv.2010.11
.002(Accessed 21 March 2018).
Ventura-Lima J, de Castro MR, Acosta D, Fattorini D, Regoli F, de Carvalho LM, Bohrer D, Geracitano LA, Barros DM, Marins LF, da Silva RS, Bonan CD, Bogo MR, & Monserrat JM. (2009a). Effects of arsenic (As) exposure on the antioxidant status of gills of the zebrafishDaniorerio (Cyprinidae). Comparative biochemistry and physiology. Toxicology & pharmacology: CBP, 149(4), 538–543. Available at: https://doi.org/10.1016/j.cbpc.2008.12.0
(Accessed 20 October 2019).
Ventura-Lima J, Fattorini D, Regoli F, & Monserrat JM. (2009b). Effects of different inorganic arsenic species in Cyprinuscarpio (Cyprinidae) tissues after
short-time exposure: bioaccumulation, biotransformation and biological responses. Environmental pollution (Barking, Essex: 1987), 157(12), 3479– 3484.Available at:
https://doi.org/10.1016/j.envpol.2009.06 .023(Accessed 20 October 2019).
Wei Y, Meng Y, Huang Y, Liu Z, Zhong K, Ma J, Zhang W, Li Y, & Lu H. (2021). Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere, 263, 127860. Available at: https://doi.org/10.1016/j.chemosphere.2 020.127860(Accessed 11 April 2021).
World Health Organization. 2011Arsenic . -in drinkingwater: background document for development of WHO guidelines for drinking-water quality. World Health Organization. Available at: https://www.who.int/water_sanitation_ health/dwq/chemicals/arsenic.pdf5(Acc essed 14 January 2018).
Zhao H, Wang Y, Guo M, Fei D, Mu M, Yu H, & Xing M. (2019a). Hepatoprotective effects of zinc (II) via cytochrome P-450/reactive oxygen species and canonical apoptosis pathways after arsenite waterborne exposure in common carp. Chemosphere, 236, 124869. Available at:https://doi.org/10.1016/j.chemospher
e.2019.12486(Accessed 21 February 2021). 54. Zhao H, Wang Y, Yang X, Fei D, Mu M, Guo M, Yu H, & Xing M. (2019b). Zinc alleviates arsenism in common carp: Varied change profiles of cytokines and tight junction proteins among two intestinal segments. Fish & shellfish immunology, 94, 761–768. Available at: https://doi.org/10.1016/j.fsi.2019.09.069 (Accessed 3 January 2021).