Effects of Male Diet on Cuticular Hydrocarbons in Drosophila melanogaster

Authors

  • K Anitha Drosophila stock centre, Department of studies in Zoology, University of Mysore, Manasagangothri, Mysore, Karnataka 560006, India.
  • M S Krishna Associate Professor, Department of studies in Zoology, University of Mysore, Manasagangothri, Mysore, Karnataka 560006, India.

DOI:

https://doi.org/10.48165/

Keywords:

Cuticular hydrocarbon, Chromatogram, Nutrition, Carbohydrate, Tricontane

Abstract

Many elements of animal physiology, including as  lifespan, general health, and reproductive success,  have been studied, and cuticular hydrocarbon  variation in Drosophila, are considered to be  influenced by nutrition, which is one of the most  significant environmental factors. A most important  role of the insect CHC profile is to water-resistant the  cuticle and avoid desiccation. Here we investigate the  effect of male diet on cuticular hydrocarbon of  Drosophila melanogaster, we found that carbohydrate  and protein-rich diets have a significant impact on  cuticular hydrocarbon variation in male D.  melanogaster flies. Eighteen compounds were  identified in male flies of D. melanogaster reared in all  three different diets (normal media/ carbohydrate  rich media/protein rich media), though, the  concentration of CHC varies in the different diet  significantly, which was suggest that male diet has a  significant influence on cuticular hydrocarbon in D.  melanogaster flies which inturn effect the attractiveness  of the flies and fitness of Drosophila melanogaster. 

Downloads

Download data is not yet available.

References

Andersson, M.B. Sexual selection (Princeton University Press, Princeton), 1994, 72.

Averhoff, W.W. & Richardson, R.H. (1974). Pheromonal control of mating patterns in Drosophila melanogaster. Behav. Genet, 4, 207–225.

Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J. & Papageorgiou, A. (2009). Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab, 296, E592– 602.

Bross, T.G., Rogia, B & Helfand, S.L. (2005). Behavioral, physical, and demographic changes in Drosophila

populations through dietary restriction. — Aging Cell, 4 309–317.

Broughton, S.J., Piper, M.D., Ikeya, T.M., Jacobon, J., Driege, Y., Martinez, P., Hafen, E., WithersI, D.J., Leevers, S.J & Partridge, L. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Nat. Acad. Sci. USA, 102, 3105–3110.

Catterson, J.H., Knowles-Barley, S., James, K., Heck, M.M., Harmar, A.J. (2010). Dietary modulation of Drosophila sleep wake behaviour. PLoS ONE, 5, e12062.

Cobb, M., Ferveur, J.F. (1996) b. Female mate discrimination or male responses to female stimulation? Evolutio, 50, 1719– 1720.

Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., Leopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114 739– 749.

Coyne, J.A., Oyama, R. (1995). Localization of pheromonal sexual dimorphism in Drosophila melanogaster and its effect on sexual isolation. Proc. Natl. Acad. Sci. USA, 92, 9505–9509

Coyne, J.A. (1996). Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia. Genetics, 143 1689–1698.

Djawdan, M., Chippindale, A.K., Rose, M.R., Bradley, T.J. (1998). Metabolic reserves and evolved stress resistance in Drosophila melanogaster. Physiological Zoology, 71, 584–594

Fanson, B.G., Taylor, P.W., (2011). Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age, 34, 1361–1368.

Ferveur, J.F. (2005). Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal

communication. Behav Genet, 35, 279–295 14. Fervour, J.F., Savarit, F., O’Kane, C.J., Sureau, G., Greenspan, R.J., Jallon, J.M. (1997). Genetic feminization of pheromones and its behavioral consequences

in Drosophila males. Science, 276 1555–1558. 15. Ferveur, J.F., Sureau, G., (1996) . Simultaneous influence on male courtship

of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. Biol. Sci, 263, 967–973.

Fontana, L., Partridge, L., Longo, V.D. (2010). Extending healthy life span–from yeast to humans. Science, 328 321–326.

Fricke, C., Bretman, A., Chapman, T. (2008). Adult male nutrition and reproductive success in Drosophila melanogaster. Evolution, 62, 3170–3177.

Gosden, T.P., Chenoweth, S.F. (2011). On the evolution of heightened condition dependence of male sexual displays. J Evol Biol, 24, 685–692.

Howard, R.W & Blomquist, G.J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371–393.

Jackson, F. R., Bartelt, R. L. (1986). Cuticular hydrocarbons of Drosophila virilis: comparison by age and sex. Insect Biochem.16, 433–439.

Jallon, J.M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet, 14, 441–478.

Jallon, J.-M., David, J. R. (1987). Variation in the cuticular hydrocarbons among the eight species of Drosophila melanogaster subgroup. Evolution 41, 294– 302.

Kent, C., Azanchi, R., Smith, B., Chu, A., Levine, J. (2007). A Model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster . PLoS ONE, 2, 962.

Krishnan Anitha and Mysore Siddaiah Krishna (2020). Effect of Male Diet on Accessory Gland Protein and Sperm Traits in D.melanogaster. J. adv. botany zool, 8(6), 506 - 511.

Kristensen, T.N., Henningsen, A.K., Aastrup, C., Bech-Hansen, M., Hoberg Bjerre, L.B., Carlsen, B., Hagstrup, M., Graarup Jensens, S., Karlsen P., Kristensen, L. (2016): Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source. Insect Sci, 23, 771–779.

Kuo, T-H., Fedina, T., Hansen, I., Dreisewerd, K., HA D, et al. (2012). Insulin signaling mediates sexual attractiveness in Drosophila. . PLoS Genetics 8, e1002684.

Lizcano, J.M., Alrubaie, S., Kieloch, A., Deak, M., Leevers, S.J., et al.

(2003). Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Biochem J, 374, 297–306.

Mane, S. D., Thompkins, L., Richmond, R. C. (1983). Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster. Science, 222, 419–421.

Maklakov, A.A., Simpson, S.J., Zajitschek, F., Hall, M.D., Dessmann, J., et al. (2008). Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol, 18: 1062–1066.

Maynard-Smith, J. and Harper, D. (2003). Animal signals. Oxford University Press, 176 p.

Micchelli, C.A., Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439, 475–479.

Mpuru, S., Blomquist, G. J., Schal, C., Roux, M., Kuenzli, M., Dusticier, G.,Clement, J. L., Bagneres , A. G. (2001). Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem. Mol. Biol, 31, 139–155.

Nelson, D. R., Dillwith, J. W., Blomquist, G. J. (1981). Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem, 11, 187– 197.

Piper, M.D., Partridge, L., Raubenheimer, D., Simpson, S.J. (2011). Dietary restriction and aging: a unifying perspective, Cell Metab. 14, 154–160.

Pomonis, J.G. (1989). Cuticular hydrocarbons of the screwworm, Cochliomyia

hominivorax (Diptera: Calliphoridae). Isolation, identification and quantification as a function of age, sex, and irradiation. J. Chem. Ecol, 15, 2301–2317.

Pough, F.H. (1989). Organismal performance and Darwinian fitness: approaches and interpretations. Physiol Zool, 62, 199–236.

Radimerski, T., Montagne, J., Rintelen, F., Stocker, H., van der Kaay, J., et al. (2002). DS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol, 4, 251–255.

Raubenheimer, D., Simpson, S.J. (1993). The geometry of compensatory feeding in the locust. Anim Behav, 45, 953–964

Reddiex, A.J., Gosden T.P., Bonduriansky R. and Chenoweth, S.F. (2013). Sex-specifi c fi tness consequences of nutrient intake and the resolvability of diet preferences. Am. Natur, 182, 91–102.

Rodrigues, M.A., Martins, N.E., Balance, L.F., Broom, L.N., Dias, A.J.S., Fernandes, A.S.D., Rodrigues, F., Sucena, E. & Mirth, C.K. (2015). Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol, 81, 69–80.

Rybak, F., Sureau, G and Aubin, T. Functional coupling of acoustic and chemical signals in the courtship behaviour of the male Drosophila melanogaster. Proc. Roy. Soc. Lond. Ser. B Biol. Sci, 2002269, 695–701.

Savarit, F., Ferveur, J-F. (2002). Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster . J Exp Biol, 205, 3241–3249.

Scott, D. (1986). Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc. Natl. Acad. Sci. USA, 83, 8429– 8433.

Scott, D. (1994). Genetic variation for female mate discrimination in Drosophila melanogaster. Evolution, 48,112–121.

Sibly, R.M. (1991). The life-history approach to physiological ecology. Func Ecol, 5, 184–191

Simpson, S.J., Raubenheimer, D. (2009). Macronutrient balance and lifespan. Aging (Albany NY), 1, 875–880.

Simpson, S.J., Sibly, R.M., Lee, K., Raubenheimer, D. (2004). Optimal foraging with multiple nutrient requirements. Anim Behav 68, 1299–1311.

Sisodia, S., Singh, B.N. (2010). Resistance to environmental stress in Drosophila ananassae: latitudinal variation and adaptation among populations. J Evol Biol, 23, 1979–1988

Skorupa, D.A., Dervisefendic, A., Jessica Zwiener., Scott, D. Pletcher. (2008). Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell, 7, 478–490.

Stoffolano, J. G., Schauber, E., Yin, C.- M.Tillman, J. A. and Blomquist G. J. (1997). Cuticular hydrocarbons and their role in copulatory Behav. In Phormia

regina (Meigen). J. Insect Physio,. 43, 1065- 1076.

Tirone, T.A., Brunicardi, F.C. (2001). Overview of glucose regulation. World J Surg, 25, 461–467.

Trabalon, M., Campan, M., Clement, J.-L., Thon, B., Lange, C. and Lefevre, J. (1988). Changes in cuticular hydrocarbon composition in relation to age and sexual

behavior in the female Calliphora vomitoria (Diptera). Behav. Process, 17, 107–115.

Vargas, M.A., Luo, N., Yamaguchi, A. and Kapahi, P. (2010). A Role for S6 Kinase and Serotonin in Postmating Dietary Switch and Balance of Nutrients in D. melanogaster. Curr Biol, 20, 1006–1011.

Published

2021-12-15

How to Cite

Effects of Male Diet on Cuticular Hydrocarbons in Drosophila melanogaster . (2021). Bulletin of Pure & Applied Sciences- Zoology , 40(2), 200–209. https://doi.org/10.48165/