Effect of Sublethal Concentrations of Commercial Detergents on the Protein Content of Selective Freshwater Fishes

Authors

  • Dhanapal Logeswari PG & Research Department of Zoology, NKR Government Arts College for Women, Namakkal, Tamilnadu 637001, India.
  • Kandhasamy Kaliyammal PG & Research Department of Zoology, NKR Government Arts College for Women, Namakkal, Tamilnadu 637001, India.
  • Abdul Majeeth Facika Department of Mathematics, Bishop Heber College (Autonomous), Thennur, Tiruchirappalli, Tamilnadu 620017, India.
  • Moses Rajasekara Pandian Department of Zoology, Arignar Anna Government Arts College, Namakkal, Tamilnadu 637001, India.
  • Gani Sharmila Banu Head & Assist. Professor, PG & Research Department of Zoology, NKR Government Arts College for Women, Namakkal, Tamil Nadu 637001, India

DOI:

https://doi.org/10.48165/

Keywords:

Commercial Detergents, Protein Content, Freshwater Fishes, Detrimental Effects

Abstract

Freshwater fishes are the primary and cheapest  sources of protein for humans. The quality and  quantity of protein generally determine the  nutritive value of the fishes. These values are  progressively worsening due to the  environmental contaminants that appear in  aquatic habitats. Nutritive values of protein in  the tissues of fish are inversely proportionate to  the total of pollutants that appear in aquatic  habitats. Detergents are one of the major  toxicants that rapidly contaminate lakes, rivers,  ponds, streams, and creek bodies. Hence the  present study aimed to determine the effect of  sublethal concentrations of commercial  detergents (Surf Excel, Ariel, Rin, and Nirma) on  the protein content of freshwater fishes, Indian  Carp (Catla catla), Rohu (Labeo rohita), Catfish  (Clarias gariepinus) and Tilapia (Oreochromis  niloticus). The protein contents were determined  in the fish tissues of muscles, liver, and gills at  different time exposure of 24, 48, 72, and 96  hours. The results show the quantity of all tissue  proteins significantly decreased with an increase  in concentrations of all four detergents and  exposure time. Based on the findings, we suggest  that random discharge of detergents into water  bodies should be averted. 

Downloads

Download data is not yet available.

References

Al-Ghanayem, A.A., Joseph, B. (2020). Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl. Microbiol. Biotechnol.

, 2871-2882.

Azizullah, A., Richter, P., Häder, D.P. (2011). Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. Chemosphere 84, 1392-1400.

Azizullah, A., Richter, P., Ullah, W., Ali, I., Häder, D.P. (2013). Ecotoxicity evaluation of a liquid detergent using the automatic biotest ECOTOX. Ecotoxicology 22, 1043-1052.

Belsito, D.V., Fransway, A.F., Fowler, J.F., Jr., Sherertz, E.F., Maibach, H.I., Mark, J.G., Jr., Mathias, C.G., Rietschel, R.L., Storrs, F.J., Nethercott, J.R. (2002). Allergic contact dermatitis to detergents: a multicenter study to assess prevalence. J Am Acad Dermatol 46, 200-206.

Burress, R.M., 1975. Development and evaluation of on-site toxicity test procedures for fishery investigations, Investigations in Fish Control, - ed.

Cedervall, T., Hansson, L.A., Lard, M., Frohm, B., Linse, S. (2012). Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7, e32254.

Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G. (2020). Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). Ecotoxicol Environ Saf 192, 110248.

Coutinho, C., Gokhale, K.S. (2000). Selected oxidative enzymes and histopathological changes in the gills of Cyprinus carpio and Oreochromis mossambicus cultured in secondary sewage effluent. Water Research 34, 2997-3004.

Day, R., Bradberry, S.M., Thomas, S.H.L., Vale, J.A. (2019). Liquid laundry detergent capsules (PODS): a review of their composition and mechanisms of toxicity, and of the circumstances, routes, features, and management of exposure. Clin Toxicol (Phila) 57, 1053-

Desel, H. (2019). [Poisoning documentation and reporting in Germany]. Bundesgesundheitsblatt

Gesundheitsforschung

Gesundheitsschutz 62, 1287-1294. 11.Fiorelini Pereira, B., Alves, A.L., Senhorini, J.A., Hakime Scalize, P., Tocchini De Figueiredo, F.A., Pitol, D.L., Caetano, F.H. (2017). Quantifying structural modifications of gills of two fish species Astyanax altiparanae (Lambari) and Prochilodus lineatus (Curimbatá) after exposure to biodegradable detergents in urban lake water. J Toxicol Environ Health A 80, 338-348.

Fowler, J.F., Jr., MJZ, J.Z., Napolitano, L., Russell, M., Coope-Epstein, J. (2017). A Novel Multifactorial Approach to Developing Mild Laundry Detergents and Assessing Their Relative Mildness. J Drugs Dermatol 16, 1235-1239.

Ganesan, R.M., Jebakumar, S.R.D., Jayaraman, J. (1989). Sublethal effects of organochlorine insecticide (endosulfan) on protein, carbohydrate and lipid contents in liver tissues of Oreochromis mossambicus. Proceedings: Animal Sciences 98, 51-

Kasumyan, A.O. (2019). The taste system in fishes and the effects of environmental variables. J Fish Biol 95, 155-178.

Kierkegaard, A., Chen, C., Armitage, J.M., Arnot, J.A., Droge, S., McLachlan, M.S. (2020). Tissue Distribution of Several Series of Cationic Surfactants in Rainbow Trout (Oncorhynchus mykiss) Following Exposure via Water. Environ Sci Technol 54, 4190-4199.

Konar, S.K. (1969). Laboratory Studies on Two Organophosphorus Insecticides, DDVP and Phosphamidon, as Selective Toxicants. Transactions of the American Fisheries Society 98, 430-437.

Lal, H., Misra, V., Viswanathan, P.N., Krishna Murti, C.R. (1983). Comparative studies on ecotoxicology of synthetic detergents. Ecotoxicol Environ Saf 7, 538-545.

Lebreton, M., Sire, S., Carayon, J.L., Malgouyres, J.M., Vignet, C., Géret, F., Bonnafé, E. (2021). Low concentrations of oxazepam induce feeding and molecular changes in Radix balthica juveniles. Aquat Toxicol 230, 105694.

Litchfield, J.T., Jr., Wilcoxon, F. (1949). A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96, 99-113.

Lopes, F.P., Pereira, B.F., Alves, R.M.S., Valim, J.R.T., Figueiredo, F.A.T., Pitol, D.L., Caetano, F.H. (2017). Ultramorphological changes in gill rakers of Astyanax altiparanae (Characidae) kept in contaminated environments. Fish Physiol Biochem 43, 1033-1041.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.

Pedrazzani, R., Ceretti, E., Zerbini, I., Casale, R., Gozio, E., Bertanza, G., Gelatti, U., Donato, F., Feretti, D. (2012). Biodegradability, toxicity and mutagenicity of detergents: Integrated experimental evaluations. Ecotoxicol Environ Saf 84, 274-281.

Pettersson, A., Adamsson, M., Dave, G. (2000). Toxicity and detoxification of Swedish detergents and softener products. Chemosphere 41, 1611-1620.

Quevedo, C.M.G., Paganini, W.S. (2018). [Phosphorus delivered to surface waters resulting from the use of powder detergents: environmental and public health aspects]. Cien Saude Colet 23, 3891-3902.

Renaud, F., Warnau, M., Oberhänsli, F., Teyssié, J.L., Temara, A., Rouleau, C., Metian, M. (2014). Bioconcentration of the anionic surfactant linear alkylbenzene sulfonate (LAS) in the marine shrimp Palaemonetes varians: a radiotracer study. Mar Pollut Bull 85, 244-247.

Roy, D. (1988). Impact of detergents on the protein histochemistry of various cell types of the gill epithelium of Rita rita. Ecotoxicol Environ Saf 15, 206-

Saxena, P., Sharma, S., Sharma, S., Suryavathi, V., Grover, R., Soni, P., Kumar, S., Sharma, K.P., (2005). Effect of an acute and chronic toxicity of four commercial detergents on the freshwater fish Gambusia affinis Baird & Gerard. J Environ Sci Eng 47, 119-

Singh, G., Patidar, S.K. (2020). Water quality restoration by harvesting mixed culture microalgae using Moringa oleifera. Water Environ Res 92, 1268-

Sobrino-Figueroa, A. (2018). Toxic effect of commercial detergents on organisms from different trophic levels. Environ Sci Pollut Res Int 25, 13283-13291.

Sobrino-Figueroa, A.S. (2013). Evaluation of oxidative stress and genetic damage caused by detergents in the zebrafish Danio rerio (Cyprinidae). Comp Biochem Physiol A Mol Integr Physiol 165, 528-532.

Tasaki, J., Nakayama, K., Shimizu, I., Yamada, H., Suzuki, T., Nishiyama, N., Yamane, M. (2017). Cellular and molecular hypoxic response in common carp (Cyprinus carpio) exposed to linear alkylbenzene sulfonate at sublethal concentrations. Environmental Toxicology 32, 122-130.

Trüeb, R.M. (2007). Shampoos: ingredients, efficacy and adverse effects. J Dtsch Dermatol Ges 5, 356-365.

Uc-Peraza, R.G., Delgado-Blas, V.H. (2015). Acute toxicity and risk assessment of three commercial detergents using the polychaete Capitella sp. C from Chetumal Bay,

Quintana Roo, Mexico. International Aquatic Research 7, 251-261.

Vaughan, M., van Egmond, R. (2010). The use of the zebrafish (Danio rerio) embryo for the acute toxicity testing of surfactants, as a possible alternative to the acute fish test. Altern Lab Anim 38, 231-238.

Warne, M.S., Schifko, A.D. (1999). Toxicity of laundry detergent components to a freshwater cladoceran and their contribution to detergent toxicity. Ecotoxicol Environ Saf 44, 196-

Ying, G.G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32, 417-431.

Young, J.C., Clesceri, L.S., Kamhawy, S.M. (2005). Changes in the biochemical oxygen demand procedure in the 21st edition of Standard Methods for the Examination of Water and Wastewater. Water Environ Res 77, 404-410.

Zimmermann, M., Westwell, M.S., Greenfield, S.A. (2009). Impact of detergents on the activity of acetylcholinesterase and on the effectiveness of its inhibitors. Biol Chem 390, 19-26.

Published

2021-06-15

How to Cite

Effect of Sublethal Concentrations of Commercial Detergents on the Protein Content of Selective Freshwater Fishes . (2021). Bulletin of Pure & Applied Sciences- Zoology , 40(1), 127–139. https://doi.org/10.48165/