Phytochemical Profiling and Mosquitocidal Properties of Grape Fruit Pedicel Extract Against Malarial, Dengue and Filarial Vectors
DOI:
https://doi.org/10.48165/Keywords:
Grape pedicel, Phyto-Chemical, Mortality, HatchabilityAbstract
The dengue, malaria and filariasis are serious global disease which caused by the mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. These species cause high morbidity and mortality to the human population and the development of resistance to chemical insecticides resulting in rebounding vectorial capacity. Plants may be alternative sources of mosquito control agents. The GC-MS analysis of grape fruit pedicel was done and five major compounds were identified in the methanolic grape pedicel extract namely, N Hexadecanoic Acid, 1,E-11,Z-13-Octadecatriene, 9,12- Octadecadienoic Acid, 9-Octadecynoic Acid and 6,8- Dodecadien-1-OL (6Z,8E). The mosquitocidals activity of methanol extracts from grape fruit pedicel against immature and adult of An. stephensi, Ae. aegypti and Cx. quinquefasciatus (L.) were studied. After 24 hrs the mortality was noted and Lethal Concentration (LC50) was calculated against An. stephensi, Ae. aegypti and Cx. quinquefasciatus. The LC50 of An. stephensi were 133.263ppm, 178.275ppm, 235.619ppm, 284.472ppm and 380.630ppm for I, II, III, IV Instar and pupae, respectively. Similarly, LC50 for Ae. aegypti were 89.093ppm (I Instar), 196.560ppm (II Instar), 241.043ppm (III Instar), 323.565ppm (IV Instar) and 363.515ppm (pupae) and for Cx. quinquefasciatus were 190.073ppm, 261.693ppm, 295.404ppm, 289.067ppm and 348.430ppm for I Instar, II Instar, III Instar, IV instar and Pupae, respectively. After the treatment of grape pedicel extract the percentage of egg hatchability (Ovicidal activity) was observed. No eggs were hatched out after 400ppm of three mosquito species. In ovipositional deterrent study the number of eggs laid in control and treatment water was observed and based on this the Effective Repellency (ER) was calculated. The ER ranging from 69.83% to 88.43 % for An. stephensi; 72.18% to 89.14% for Ae. aegypti; 69.66% to 88.81% for Cx. quinquefasciatus, was investigated. It is thus concluded that the grape fruit pedicel extract has an effective toxicity against An. stephensi, Ae. Aegypti and Cx. quinquefasciatus. Hence, this pedicel extract can be used as an insecticide.
Downloads
References
Murugan, K., Benelli, G., Ayyappan, S., Dinesh, D., Panneerselvam, C., Nicoletti, M., Hwang, J. S., Mahesh Kumar, P., Subramaniam, J., & Suresh, U. (2015a). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops
longisetus. Parasitology Research, 114(6), 2243-53.
Murugan, K., Benelli, G., Panneerselvam, C., Subramaniam, J., Jeyalalitha, T., Dinesh, D., Nicoletti, M., Hwang, J.S., Suresh, U., & Madhiyazhagan, P. (2015b). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 153: 129-138.
Murugan, K., Priyanka, V., Dinesh, D., Madhiyazhagan, P., Panneerselvam, C., Subramaniam, J., Suresh, U., Chandramohan, B., Roni, M., Nicoletti, M., Alarfaj, A. A.,
Higuchi, A., Munusamy, M. A., Khater, H. F., Messing, R. H., & Benelli, G. (2015c). Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitology Research, 114: 3601– 3610.
Benelli, G., Bedini, S., Cosci, F., Toniolo, C., Conti, B., & Nicoletti, M. (2015a). Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitology Research, 114: 227– 236.
Benelli, G., Bedini, S., Flamini, G., Cosci, F., Cioni, P. L., Amira, S., Benchikh, F., Laouer, H., Di Giuseppe, G., & Conti, B. (2015b).
Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitology Research, 114: 1011-1021.
World Health Organization. (1996). Report of WGO informal consultation on the evaluation and testing insecticides, pp: 69.
World Health Organization. (2018). Lymphatic filariasis, Retrieved from https://www.who.int/news
room/fact-sheets/detail/lymphatic filariasis.
Rasheed, M., Afshan F., Tariq R. M., Siddiqui B.S., Gulzar, T., Mahmood, A., Begum, S., & Khan, B. (2005). Phytochemical studies on the seed extract of Piper nigrum Linn. Natural Product Research, 19, 703-712.
Amer, A., & Mehlhorn, H. (2006a). Larvicidal effects of various essential oils against Aedes, Anopheles., and Culex larvae (Diptera, Culicidae). Parasitology Research, 99: 466-472.
Amer, A., & Mehlhorn, H. (2006b). The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitology Research, 99, 491-499.
Rahuman, A. A., Gopalakrishnan, G., Venkatesan, P., & Geetha, K. (2008a). Isolation and identification of
mosquito larvicidal compound from Abutilon indicum (Linn) Sweet. Parasitology Research, 102(5), 981- 988.
Rahuman, A. A., Venkatesan, P., Geetha, K., Gopalakrishnan, G., Bagavan, A., & Kamaraj, C. (2008b) Mosquito larvicidal activity of gluanol acetate a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitology Research, 103(2), 333–
Park, S., Gakh, O., Mooney, S. M., & Isaya, G. (2002). The ferroxidase activity of yeast frataxin. Journal of Biological Chemistry, 277(41), 38589-
Mansour, M. M. F., & Salama, K. H. A. (2004). Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 52, 113-122.
Panneerselvam, C., Murugan, K., Roni, M., Aziz, A. T., Suresh, U., Rajaganesh, R., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Nicoletti, M., Higuchi, A., Alarfaj, A. A., Munusamy, M. A., Kumar, S., Desneux, N., & Benelli, G. (2016). Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitology Research, 115, 997-1013.
Panneerselvam, C., & Murugan, K. (2013). Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitology Research, 112(2), 679e-692e.
Govindarajan M., & Benelli, G. (2016). Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicology and Environmental
Safety, 133, 395-402.
Aziz, Z. A. A., Ahmad, A., Setapar, S. H. M., Karakucuk, A., Azim, M. M., & Lokhat, D. (2018). Essential Oils: Extraction techniques, Pharmaceutical and Therapeutic potential-A review. Current Drug Metabolism, 19, 1100–1110.
Ravikumar, S., Ramanathan, G., Gnanadesigan, M., Ramu, A., &
Vijayakumar, V. (2011). In-vitro anti plasmodial activity of methanolic extracts from seaweeds of South West coast of India. Asian Pacific Journal of
Tropical Medicine, 4(11), 862-865. 20.Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504.
Usha, V., & Bopaiah, A. K. (2011). Preliminary phyto-chemical evaluation of the leaf extract of five Cassia Species. Journal of Chemical and Pharmaceutical Research, 5, 574-583.
Shakya, A. K. (2016). Medicinal plants: future source of new drugs. International Journal of Herbal Medicine, 4(4), 59-64.
Wink, M. (1993). Production and application of phytochemicals from agricultural perspective. In.Van Beck TA & H. Breteler (Eds.), Phytochemistry and agriculture, (pp. 171-213). Oxford, UK: Clarendon Press.
Kim, T. H., Joong., & Hyung, H. B. (2001). Volatile flavour compounds in suspension culture of Agastache rugosa Kuntze (Korean mint). Journal
of the Science of Food and Agriculture., 81, 569–575.
Assabgui, R., Lorenzetti, F., Terradot, L., Regnault-Roger, C., Malo, N., Wiriyachitra, P., Sanchez-Vindas, P.E., San-Roman, L., Isman, M.B., Durst, T., & Arnason, J.T. (1997). Efficacy of botanicals from the Meliaceae and Piperaceae. In P. A. Hedin, R. M. Hollingworth, E. P. Masler, J. Miyamoto & D. G. Thompson. (Eds.), Phytochemicals for Pest Control, (658: 38-48). ACS Symp., American Chemical Society.
National Institute of Standards and Technology GCMS database, (2008) library. pp. 1-49.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Finney, D. J. (1947). Probit analysis. 1st edn., Cambridge: Cambridge University Press..
Xue, R. D., Barnard, D. R., & Ali, A. (2001). Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Medical
and Veterinary Entomology, 15, 126- 131.
Su, T., & Mulla, M. (1998). Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). Journal of American Mosquito Control Association, l4(2), 204-209.
Shahi, M., Hanafi-Bojd, A. A., Iranshahi, M., Vatandoost, H., & Hanafi-Bojd, M. Y. (2010). Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). Journal of Vector Borne Disease, 47, 185-188.
Isman, M. B. (1997). Neem and other Botanical insecticides: Barriers to commercialization. Phytoparasitica, 25, 339-44.
Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V., & Hsu, M. J. (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazilian Journal of Microbiology, 38(4), 739-742.
Lawrence, J., Alcock, D., McGrath, P., Kay, J., MacMurray, B., & Dulberg, C. (1993). The development of a tool to assess neonatal pain. Neonatal Network, 12, 59-66.
Bubeck, D. M., Fehr, W. R., & Hammond, E. G. (1989). Inheritance of Palmitic and Stearic Acid Mutants of Soybean. Crop Science, 29, 652–
Osorio, J., Fernández-Martínez, J., Mancha, M., & Garcés, R. (1995). Mutant sunflower with high concentration of saturated fatty acids
in the oil. Crop Science, 35, 739-742. 37.Boham, A. B., & Kocipai, A. C. (1994). Flavonoid and Condensed Tannins from Leaves of Hawaiian vaccininum and Vicalycinium vaticulum. Pacific Science, 48, 458-463.
Sukumar, K., Perich, M. J., & Boobar, L. R. (1991). Botanical derivatives in mosquito control: a Review. Journal of American Mosquito Control Association, 7, 210-237.
Shaalan, E. A. S., Canyon, D., Younes, M. W. F., Abdel Wahab, H., & Mansour, A. H. (2005). A review of botanical phytochemicals with
mosquitocidal potential. Environment International, 31, 1149-1166.
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and increasingly regulated world. Annual Review of Entomology, 51, 45-66.
Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, 76, 174-187.
Pasquale, G., Romanelli, G. P., Autino, J. C., García, J., Ortiz, E. V., & Duchowicz, P. R. (2012). Quantitative structure-activity relationships of mosquito larvicidal chalcone derivatives. Journal of Agricultural Food Chemistry, 60, 692–697.
Govindarajan, M., & Sivakumar, R. (2014). Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitology Research, 113(4), 1435– 1449.
Venkatachalam, M. R., & Jebanesan, A. (2001). Larvicidal activity of Hydrocotyl javanica Thumb. (Apiaceae) extract against Culex quinquefasciatus. Journal of Experimental Zoology India, 4(1), 99-
Rajkumar, S., & Jebanesan, A. (2004). Ovicidal activity of Solanum trilobatum Linn (Solanaceae) leaf extract against Culex quinquefasciatus Say and Culex tritaeniorhynchus Gile (Diptera: Culicidae). International Journal of Tropical Insect Science, 24(4), 340– 342.
Mathivanan, T., Govindarajana, M., Elumalai, K., Krishnappa, K., & Ananthan, A. (2010). Mosquito larvicidal and phytochemical properties of Ervatamia coronaria
Stapf. (Family: Apocynaceae). Journal of Vector Borne Diseases, 47, 178-180. 47.Ramar, M., Ignacimuthu, S., & Paulraj, M. G. (2014). Bio-efficacy of pupicidal activity of some plant essential oils on Culex quinquefasciatus and Anopheles stephensi. International Journal of Biotechnology, 3(8), 104-114.
Rajkumar, S., Jebanesan, A., & Nagarajan, R. (2011). Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 4(12), 948-951.
Aarthi, N., & Murugan. K. (2011). Effect of Vetiveria zizanioides L. Root extracts on the malarial vector, Anopheles stephensi Liston. Asian Pacific Journal of Tropical Disease, 154-158.
Kuppusamy, C. K. (2008). Oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi Liston (Diptera:Culicidae). Entomological Research, 38, 119-125.
Rajkumar, S., & Jebanesan, A. (2009). Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi
Liston (Diptera: Culicidae). Parasitology Research, 104, 337-340. 52.Govindarajan, M., Jebanesan, A., Pushpanathan, T., & Samidurai, K. (2008a). Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera:Culicidae). Parasitology Research, 103(3), 691– 695.
Govindarajan, M., Jebanesan, A., & Pushpanathan, T. (2008b). Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitology Research, 102(2), 289– 292.
Elango, G., Rahuman, A. A., Bagavan, A., Kamaraj, C., Zahir, A. A., & Venkatesan, C. (2009). Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitology Research, 104, 1381–1388.
Coria, C., Almiron, W., & Valladares, G. (2008). Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresource Technology, 99(8), 3066e
e.
Autran, E. S., Neves, I. A. & da Silva. C. S. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum
Jacq. (Piperaceae). Bioresource Technology, 100(7), 2284e-2288e. 57.Prajapati, V., Tripathi, A. K., Aggarwal, K .K., & Khanuja, S. P. S. (2005). Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology, 96, 1749- 1757.
Rattan, R. S. (2010). Mechanism of action of insecticidal secondary
metabolites of plant origin. Crop Protection., 29, 913–920.
Ramkumar, G., Karthi, S., Shivakumar, M. S., & Kweka, E. J. (2019) Culex quinquefasciatus egg membrane alteration and ovicidal activity of Cipadessa baccifera (Roth) plant extracts compared to synthetic insect growth regulators. Research
and Reports in Tropical Medicine, 10, 145–151.
Suman, D. S., Wang, Y., Bilgrami, A. L., & Gaugler, R. (2013) Ovicidal activity of three insect growth regulators against Aedes and Culex
mosquitoes. Acta Tropica, 128, 103– 109.