Detection of Melamine in Milk Using Nanotechnology

Authors

  • Susheela Sharma Department of Chemistry, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh 452016, India
  • Swati Goyal Department of Chemistry, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh 452016, India

DOI:

https://doi.org/10.48165/

Keywords:

Noble Metal Nano Particles, Colorimetric, Biosensor, Critical Coagulation Concentration, Salt Titration, Melamine

Abstract

resistant/corrosion resistant) and have special  physical and optical properties. NMNPs are  extremely detailed and responsive visual bio  sensors for the analysis of a broad variety of  inorganic and organic components and are  particularly gold and silver nano-particles  (AuNPs and AgNPs). Colorimetric changes result  in a specific and sensitive identification of  contaminants, heavy metals, nucleic acids,  lipeid, protein, antibody, and other molecules  through interactions between noble metal  nanoparticles (NMNPs) and inorganic/organic  molecules. Capping agents can react or transfer,  causing cross-connection and non-cross binding,  broadening, or modifying local surface plasmone  resonance absorption, to the hydrogen bondage,  electrostatic interaction, and steric effects of  inorganic and organic molecules with surface  NMNPs. A collection of independent, fast and  low-cost diagnostic products with colorimetric or  clear visual reading have been extensively  applied to NMNPs-based bio sensors. 

Downloads

Download data is not yet available.

References

Chang, K., Wang, S., Zhang, H., Guo, Q., Hu, X, Lin Z, Haifeng Sun, Min Jiang, and Jiandong, Hu (2017) Colorimetric detection of melamine in milk by using gold nanoparticles

based LSPR via optical fibers. PLoS ONE 12(5): e0177131. https://doi.org/10.1371/journal.pone .0177131

Popescu, C. M., and Pfriem, A. (2020). Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire and Materials, 44(1), 100-111.

Xin, H., and Stone, R. (2008). Tainted milk scandal: Chinese probe unmasks high – tech adulteration with melamine. Sciences, 322: 1310-1311.

Hau A. K., Kwan, T.H., and Li, P.K. (2009). Melamine toxicity and the kidney. Journal of American Physiology and Nephrology, 20: 245-

Haque, M. J. (2009). Melamine toxicity in Hovac in recent past. Dinajpur Medical College Journal, 2 (1): 1.

Yang, V. L., and Batlle, D. (2008). Acute renal failure from adulteration of milk with melamine. Sciences World Journal, 8: 974- 975.

Gossner, C.M.E., Schlundt, J., Ben Embarek, P., Hird, S., Lo-Fo-Wong, D., Beltran, J.J.O., Teoh, K.N. and Tritscher, A., 2009. The melamine incident: implications for international food and feed safety. Environmental health perspectives, 117(12),1803-

Zhu, H., and Kannan, K. (2019). Melamine and cyanuric acid in foodstuffs from the United States and

their implications for human exposure. Environment international, 130, 104950.

WHO (World Health Organization). 2009. Toxicological and Health Aspects of Melamine and Cyanuric Acid. Available: http://www.who.int/foodsafety/fs_ma

nagement/infosan_

events/en/index.htm

Hirt, R. C., King, F. T., and Schmitt, R. G. (1954). Detection and estimation of melamine in wet – strength paper by UV spectrophotometry. Analytical Chemistry, 26: 1273 -1274.

Swann, M. H., and Esposito, G. G. (1958). Detection of urea, melamine, isocyanate, and urethane resins. Analytical Chemistry, 30: 107-109.

Filigenzi, M. S., and Tor, E. R., Poppenga, R. H., Aston, L. A., B. Puschner, B. (2007). The determination of melamine in muscle tissue by liquid chromatography/ tandem mass spectrometry. Rapid Communication Mass Spectrometry,

: 4027-4032.

Ehling, S., Tefera, S., Ho, I. P. (2007) High- performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by

products ammeline, ammelide, and cyanuric acid food additives and contaminants. Food Addition Contamination, 24: 1319 -1325.

Valencia, R. M., Ceballos-Magana, S.G., Daniel Rosales-Martinez, D., Gonzalo-Lumbreras, R., Santos Montes, A., Cubedo-Fernandez Trapiella, A., Izquierdo Hornillos, R.C. (2008). Method development and validation formelamine and its derivatives in rice concentrate by liquid chromatography. Application to animal feed samples. Analytical Bio analytical Chemistry, 392: 523-53.

Edward Bańkowski, M. D., Galewska, Z., Gogiel, T., Małkowski, A., Romanowicz, L., Sobolewski, K., and Wolańska, M. (2013). Biochemistry Workbook. 3-127pp

Sakellari, G. I., Hondow, N., & Gardiner, P. H. (2020). Factors Influencing the Surface Functionalization of Citrate Stabilized Gold Nanoparticles with Cysteamine,

-Mercaptopropionic Acid or l Selenocystine for Sensor Applications. Chemosensors, 8(3), 80.

Grys, D.B., de Nijs, B., Salmon, A.R., Huang, J., Wang, W., Chen, W.H., Scherman, O.A. and Baumberg, J. J. (2020). Citrate Coordination and Bridging of Gold Nanoparticles: The

Role of Gold Adatoms in AuNP Aging. ACS nano, 14(7), 8689-8696.

Chen, Z., Zhang, C., & Wang, C. (2015). A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes. Analytical Methods, 7(3), 838-841.

Published

2021-06-15

How to Cite

Detection of Melamine in Milk Using Nanotechnology . (2021). Bulletin of Pure & Applied Sciences- Zoology , 40(1), 85–91. https://doi.org/10.48165/