Assessment of Genotoxicitxicity, Hepatotoxicity and Reproductive ctive of Imidacloprid on Mammammalian Models

Authors

  • Poonam Yadav Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana Haryana 124 001, India.
  • 2Sunita Dalal Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana 136119, India
  • Sudhir Kumar Kataria Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana Haryana 124 001, India.

DOI:

https://doi.org/10.48165/

Keywords:

Neonicotinoid, Imidacloprid, Mammalian models, Hepatotoxicity, Reproductive toxicity, Genotoxicity

Abstract


Imidacloprid, a systemic neonicotinoid neonicotinoid insecticide, isused widely to control various typesypes of harmful insects and pests to prevent crop damage. Use Use of imidacloprid was increased tremendously in last feww decades due to its lowtoxicityon mammals/vertebrates. tes. Consistent use of Imidacloprid in enormous amount showed howed evidences of toxicity in exposed non-target invertebravertebrates, vertebrates and also in mammals. This review focusfocuses on the extent of toxicity induced at genetic, biomolecular,biomolecular, biochemical and histological level due to exposure sure of imidacloprid on mammalian models. Various  parameters like antioxidant enzyme assays, ccytotoxic assays, hematological parameters, histological cal parameters and reprotoxic assays are used to evaluate evaluate the toxicity of imidacloprid in mammalian models. . IImidacloprid may damage DNA, alter histology and distudisturb antioxidant system of the body. The outcome wiwill help in better understanding of imidacloprid toxiciticity on mammalian systems. 

Downloads

Download data is not yet available.

References

Abdel-Razik, R. K., Mosallam, E. M., Hamed, N. A., Badawy, M. E. & Abo-El Saad, M. M. (2021). Testicular deficiency associated with exposure to cypermethrin, imidacloprid, and chlorpyrifos in adult rats. Environmental toxicology and pharmacology, 87, 103724.

Adedara, I. A., Owoeye, O., Ajayi, B. O., Awogbindin, I. O., Rocha, J. B. & Farombi, E. O. (2018). Diphenyl diselenide abrogates chlorpyrifos-induced hypothalamic

pituitary-testicular axis impairment in rats. Biochemical and biophysical research communications, 503(1), 171-176.

Anderson, J. C., Dubetz, C. & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate,

exposure, and biological effects. Science of the Total Environment, 505, 409-422.

Arfat, Y., Mahmood, N., Tahir, M.U., Rashid, M., Anjum, S., Zhao, F., Li, D.J., Sun, Y.L., Hu, L., Zhihao, C. & Yin, C. (2014). Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicology reports, 1, pp.554-561.

Badawy, M. H., Ahmed, N. S. & Attia, A. M. (2018). Sub-acute oral toxicity of imidacloprid and fipronil pesticide mixture in male albino rats; biochemical and reproductive toxicity evaluation. J Mater Environ Sci, 9, 2431-2437.

Badgujar, P.C., Jain, S.K., Singh, A., Punia, J.S., Gupta, R.P. & Chandratre, G.A. (2013). Immunotoxic effects of imidacloprid following 28 days of oral exposure in BALB/c mice. Environmental toxicology and pharmacology, 35(3), pp.408-418.

Bagri, P., Kumar, V. & Sikka A.K. (2016). Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice. Drug and chemical toxicology, 39(4), pp.412-417.

Bal, R., Naziroğlu, M., Türk, G., Yilmaz, Ö., Kuloğlu, T., Etem, E. & Baydas, G. (2012). Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell biochemistry and function, 30(6), pp.492-499.

Bhardwaj, S., Srivastava, M.K., Kapoor, U. & Srivastava, L.P. (2010). A 90 days oral toxicity of imidacloprid in female rats: morphological, biochemical and histopathological evaluations. Food and chemical toxicology, 48(5), pp.1185-1190.

Bhaskar, R. & Mohanty, B. (2014). Pesticides in mixture disrupt metabolic regulation: in silico and in vivo analysis of cumulative toxicity of mancozeb and imidacloprid on body weight of mice. General and comparative endocrinology, 205, pp.226-234.

Cai, D. W. (2008). Understand the role of chemical pesticides and prevent misuses of pesticides. Bulletin of Agricultural Science and Technology, 1(6), 36-38.

Calderón-Segura, M.E., Gómez-Arroyo, S., Villalobos-Pietrini, R., Martínez-Valenzuela, C., Carbajal-López, Y., Calderón-Ezquerro, M.D.C., Cortés-Eslava, J., García-Martínez,

R., Flores-Ramírez, D., Rodríguez-Romero, M.I. & Méndez-Pérez, P. (2012). Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news. Journal of toxicology.

Chakroun, S., Grissa, I., Ezzi, L., Ammar, O., Neffati, F., Kerkeni, E. & Cheikh, H. B. (2017). Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment. Journal of Coastal Life Medicine, 5(12), 540-546.

Cimino, A. M., Boyles, A. L., Thayer, K. A. & Perry, M. J. (2017). Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environmental health perspectives, 125(2), 155-162.

Craig, M. S., Gupta, R. C., Candery, T. D. & Britton, D. A. (2005). Human exposure to imidacloprid from dogs treated with Advantage®. Toxicology Mechanisms and Methods, 15(4), 287-291.

Dhawan, V. (2014). Reactive oxygen and nitrogen species: general considerations. In Studies on respiratory disorders (pp. 27-47). Humana Press, New York, NY.

Drobne, D., Blažič, M., Van Gestel, C.A., Lešer, V., Zidar, P., Jemec, A. and Trebše, P. (2008). Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere, 71(7), pp.1326-1334.

Duzguner, V. & Erdogan, S. (2012). Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats. Pesticide biochemistry and physiology, 104(1), pp.58-64.

El-Ela, F. I. A., & Abdel-Aziz, A. M. (2019). Investigating the potential protective effects of natural product quercetin against imidacloprid-induced biochemical toxicity and DNA damage in adult rats. Toxicology Reports, 6, 727-735.

Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature protocols, 2(5), 1084-1104.

Fossen, M., 2006. Environmental fate of imidacloprid. California Department of Pesticide Regulation, pp.1-16.

Gawade, L., Dadarkar, S.S., Husain, R. & Gatne, M. (2013). A detailed study of

developmental immunotoxicity of imidacloprid in Wistar rats. Food and chemical toxicology, 51, pp.61-70.

Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22(1), 103-118.

Gu, Y.H., Li, Y., Huang, X.F., Zheng, J.F., Yang, J., Diao, H., Yuan, Y., Xu, Y., Liu, M., Shi, H.J. and Xu, W.P. (2013). Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro. PloS one, 8(7), p.e70112.

Hafez, E.M., Issa, S.Y., AI-Mazroua, M.K., Ibrahim, K.T. & Rahman, S.M.A. (2016). The neonicotinoid insecticide Imidacloprid: a male reproductive system toxicity inducer

human and experimental study. Toxicol open access, 2, p.1000109.

Hassanen, E. I., Hussien, A. M., Mehanna, S., Ibrahim, M. A. & Hassan, N. H. (2020). Comparative assessment on the probable mechanisms underlying the hepatorenal toxicity of commercial imidacloprid and hexaflumuron formulations in rats. Environmental Science and Pollution Research, 1-14.

Hayase, T., Yamamoto, Y., Yamamoto, K., Abiru, H., Nishitani, Y. & Fukui, Y. (2000). Relationship between cocaine-induced hepatotoxic neurobehavioral & biochemical changes in mice: the antidotal effects of buprenorphine. Life Sciences, 67(1), 45-52.

http://ppqs.gov.in/statistical

database?page=1.

https://chemicals.nic.in/sites/default/files /Annual_Report_2021.pdf

https://www.downtoearth.org.in/blog/agr iculture/pesticide-management-bill-2020- must-address-important-concerns-69303

Ilyushina, N. A., Egorova, O. V., Masaltsev, G. V., Averianova, N. S., Revazova, Y. A., Rakitskii, V. N., ... & Tsatsakis, A. (2020). Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicology Reports, 7, 1090-1094.

Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of

agricultural and food chemistry, 59(7), 2897- 2908.

Kapoor, U., Srivastava, M.K., Bhardwaj, S. & Srivastava, L.P. (2010). Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its No Observed Effect Level (NOEL). The Journal of toxicological sciences, 35(4), pp.577-

Kapoor, U., Srivastava, M.K., Trivedi, P., Garg, V. & Srivastava, L.P. (2014). Disposition and acute toxicity of imidacloprid in female rats after single exposure. Food and chemical toxicology, 68, pp.190-195.

Karabay, N.U. & Oguz, M.G. (2005). Cytogenetic and genotoxic effects of the insecticides, imidacloprid and methamidophos. Genetics and Molecular Research, 4(4), pp.653-662.

Kataria, S.K., Chhillar, A.K., Kumar, A., Tomar, M. & Malik, V. (2016). Cytogenetic and hematological alterations induced by acute oral exposure of imidacloprid in female mice. Drug and chemical toxicology, 39(1), pp.59-65.

Katić, A., Kašuba, V., Kopjar, N., Lovaković, B. T., Čermak, A. M. M., Mendaš, G. & Želježić, D. (2021). Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chemico-Biological Interactions, 338, 109287.

Khalaf, A. A., Hassanen, E. I., Ibrahim, M. A., Tohamy, A. F., Aboseada, M. A., Hassan, H. M. & Zaki, A. R. (2020). Rosmarinic acid attenuates chromium‐induced hepatic and renal oxidative damage and DNA damage in rats. Journal of Biochemical and Molecular Toxicology, 34(11), e22579.

Kobir, M. A., Akther, L., Hasan, I., Shahid, M. A. H., Haque, Z. & Karim, M. R. (2020). Effects of Imidacloprid-Contaminated Feed Exposure on Hematological Parameters in Adult Rabbits (Oryctolagus Cuniculus). Research in Agriculture Livestock and Fisheries, 7(3), 439-444.

Lohiya, A., Kumar, V. & Punia, J.S. (2017). Imidacloprid induced oxidative stress and

histopathological changes in liver of rats. Indian J. Anim. Res, 51(3), pp.531-536. 41. Lonare, M., Kumar, M., Raut, S., More, A., Doltade, S., Badgujar, P & Telang, A. (2015). Evaluation of ameliorative effect of curcumin on imidacloprid‐induced male reproductive toxicity in wistar rats. Environmental toxicology, 31(10), pp.1250-1263.

Luo, T., Wang, X. & Jin, Y. (2021). Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 241, 108972.

Maienfisch, P., Angst, M., Brandl, F., Fischer, W., Hofer, D., Kayser, H., Kobel, W., Rindlisbacher, A., Senn, R., Steinemann, A. & Widmer, H. (2001). Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest management science, 57(10), pp.906-913.

Martelli, F., Zhongyuan, Z., Wang, J., Wong, C. O., Karagas, N. E., Roessner, U. & Batterham, P. (2020). Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proceedings of the National Academy of Sciences, 117(41), 25840-25850.

Mehmood, T., Saeed, M., Ahmad, M. M., Ikram, M. S., Siddique, F. & Tabassam, Q. (2017). Effect of imidacloprid (insecticide) on serum biochemical parameters and degenerative lesions in male rat's liver. Sindh University Research Journal-SURJ (Science Series), 49(3), 605-612.lonare

Mehta, A., Verma, R. S. & Srivastava, N. (2005). Chlorpyrifos-induced alterations in rat brain acetylcholinesterase, lipid peroxidation and ATPases.

Mohany, M., El-Feki, M., Refaat, I., Garraud, O. & Badr, G. (2012). Thymoquinone ameliorates the immunological and histological changes induced by exposure to imidacloprid insecticide. The Journal of toxicological sciences, 37(1), pp.1-11.

Morgan, A. M., Hassanen, E. I., Ogaly, H. A., Al Dulmani, S. A., Al‐Zahrani, F. A., Galal, M. K. &Hussien, A. M. (2021). The ameliorative effect of N‐acetylcysteine against penconazole induced

neurodegenerative and neuroinflammatory disorders in rats. Journal of Biochemical and Molecular Toxicology, 35(10), e22884.

Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C. & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environment international, 74, 291-

Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and applied pharmacology, 268(2), 157-177.

Nabiuni, M., Parivar, K., Noorinejad, R., Falahati, Z., Khalili, F. & Karimzadeh, L. (2015). The reproductive side effects of imidacloprid in pregnant Wistar rat. thyroid, 8, p.9.

Najafi, G.R., Razi, M., Houshyar, A., Shah, M.S. & Feyzi, S. (2010). The effect of chronic exposure with imidacloprid insecticide on fertility in mature male rats.

Ndonwi, E. N., Atogho-Tiedeu, B., Lontchi Yimagou, E., Shinkafi, T. S., Nanfa, D., Balti, E. V. & Sobngwi, E. (2020). Metabolic effects of exposure to pesticides during gestation in female Wistar rats and their offspring: a risk factor for diabetes?. Toxicological Research, 36(3), 249-256.

Ostling, & Johanson, K. J. (1984). Microelectrophoretic study of radiation induced DNA damages in individual mammalian cells. Biochemical and biophysical research communications, 123(1), 291-298.

Özdemir, S., Altun, S. & Arslan, H. (2018). Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicology reports, 5, 125-133.

Pimentel, D. (2009). Pesticides and pest control. In Integrated pest management: innovation-development process (pp. 83-87). Springer, Dordrecht.

Reda, K. (2018). Effect of Nigella sativa Oil on the Imidacloprid Induced Toxicity in

Male Albino Mice. Alexandria Journal of Agricultural Sciences, 63(4), 239-250.

Saber, T. M., Arisha, A. H., Abo-Elmaaty, A. M., Abdelgawad, F. E., Metwally, M. M., Saber, T. & Mansour, M. F. (2021). Thymol alleviates imidacloprid-induced testicular toxicity by modulating oxidative stress and expression of steroidogenesis and apoptosis

related genes in adult male rats. Ecotoxicology and Environmental Safety, 221, 112435.

Shao, X., Swenson, T.L. & Casida, J.E. (2013). Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism. Journal of agricultural and food chemistry, 61(33), pp.7883-7888.

Sharma, R. K., Singh, P., Setia, A. & Sharma, A. K. (2020). Insecticides and ovarian functions. Environmental and molecular mutagenesis, 61(3), 369-392.

Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M. &Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology, 135(4), 1358-1368.

Shivanandappa T, Rajashekar Y. Mode of action of plant-derived natural insecticides (2014). Advances in plant biopesticides;323- 345.

Soujanya, S., Lakshman, M., Madhuri, D., Reddy, A. G. & Rao, S. R. (2020). Hematological Alterations Induced by Imidacloprid and Ameliorative Effect of Withaniasomnifera in Female Albino Wistar Rats. Journal of Animal Research, 10(2), 215- 220.

Soujanya, S., Mekala, L., Doppalapudi, M., Reddy, A. G., & Rao, S. R. (2022). Ameliorative effect of Withaniasomnifera against Imidacloprid Induced Alterations in Oestrous Cycle of Female Albino Wistar Rats. Indian Journal of Pharmaceutical Sciences, 84(2), 436-450.

Statistical Database | Directorate of Plant Protection, Quarantine & Storage | GOI (ppqs.gov.in)

Stivaktakis, P.D., Kavvalakis, M.P., Tzatzarakis, M.N., Alegakis, A.K., Panagiotakis, M.N., Fragkiadaki, P., Vakonaki, E., Ozcagli, E., Hayes, W.A.,

Rakitskii, V.N & Tsatsakis, A.M. (2016). Long-term exposure of rabbits to imidaclorpid as quantified in blood induces genotoxic effect. Chemosphere, 149, pp.108-

Suter, P., Biedermann, K., Luetkemeier, H., Wilson, J. & Terrier, C. (1990). NTN 33893 technical. Multiple Generation Study in Rats. RCC, Research and Consulting Company AG. Itingen, Switzerland. Study, (100647), pp.51950-0019.

TaribaLovaković, B., Kašuba, V., Sekovanić, A., Orct, T., Jančec, A, & Pizent, A. (2021). Effects of Sub-Chronic Exposure to Imidacloprid on Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements. Antioxidants, 10(12), 1965.

Tasman, K., Rands, S. A. & Hodge, J. J. (2020). The neonicotinoid insecticide imidacloprid disrupts bumblebee foraging rhythms and sleep. Iscience, 23(12), 101827.

Tetsatsi, A. C. M., Nkeng-Effouet, P. A., Alumeti, D. M., Bonsou, G. R. F., Kamanyi, A. &Watcho, P. (2019). Colibri® insecticide induces male reproductive toxicity: alleviating effects of Lanneaacida (Anacardiaceae) in rats. Basic and Clinical Andrology, 29(1), 1-13.

Timoumi, R., Amara, I., Neffati, F., Najjar, M. F., Golli-Bennour, E., Bacha, H. & Abid Essefi, S. (2019). Acute triflumuron exposure induces oxidative stress responses in liver and kidney of Balb/C mice. Environmental Science and Pollution Research, 26(4), 3723- 3730.

Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management science, 52(5), pp.639-657.

Toor, H. K., Sangha, G. K. & Khera, K. S. (2013). Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pesticide Biochemistry and Physiology, 105(1), 1–4. https://doi.org/10.1016/j.pestbp.2012.10.00 1

Vohra, P. &Khera, K.S. (2016). Effect of imidacloprid on reproduction of female albino rats in three generation study. Journal of Veterinary Science & Technology, 7, p.340.

Vohra, P., Khera, K.S. & Sangha, G.K. (2014). Physiological, biochemical and histological alterations induced by administration of imidacloprid in female albino rats. Pesticide biochemistry and physiology, 110, pp.50-56.

Wang, Y., Xu, P., Chang, J., Li, W., Yang, L., & Tian, H. (2020). Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environmental Pollution, 258, 113731.

Wu, Y. Y., Luo, Q. H., Hou, C. S., Wang, Q., Dai, P. L., Gao, J., ... &Diao, Q. Y. (2017). Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee. Apis mellifera.

Yang, G., Yuan, X., Jin, C., Wang, D., Wang, Y., Miao, W., &Jin, Y. (2020). Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.1152

Yuan, X., Shen, J., Zhang, X., Tu, W., Fu, Z. & Jin, Y. (2020). Imidacloprid disrupts the endocrine system by interacting with androgen receptor in male mice. Science of The Total Environment, 708, 135163.

Zhang, W., Jiang, F. & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the international academy of ecology and environmental sciences, 1(2), 125.

Zhao, G. P., Li, J. W., Yang, F. W., Yin, X. F., Ren, F. Z., Fang, B. & Pang, G. F. (2021). Spermiogenesis toxicity of imidacloprid in rats, possible role of CYP3A4. Chemosphere, 282, 131120.

Published

2022-12-15

How to Cite

Assessment of Genotoxicitxicity, Hepatotoxicity and Reproductive ctive of Imidacloprid on Mammammalian Models . (2022). Bulletin of Pure & Applied Sciences- Zoology , 41(2), 277–296. https://doi.org/10.48165/