Super Food Spirulina and its Growing Potential in Aquaculture
DOI:
https://doi.org/10.48165/Keywords:
Spirulin, Dietary Supplements, Protein profile, Recirculating Aquaculture SystemsAbstract
The sustainability of aquaculture depends on the continuous and improved nutrients of feed. The rising prices and lack of effectiveness of fish meal and fish oil are pushing feed manufacturing industries to find out alternative diet supplements which are not only more nutritious for fish but also of plant origin with a cost-effective range. So, blue-green filamentous microalgae Spirulina is one of the most promising sources of protein and the best alternative to expensive animal proteins in fish feed. Spirulina possesses excellent nutritional supplements for almost all kinds of fish species. As its nutritional component improve growth, carcass composition, immunological responses, disease resistance, reproductive function, and pigmentation. Spirulina can also utilize nutrients efficiently and eliminate heavy metals from aquaculture discharge. This water purification procedure not only lowers the cost of raw materials for growing Spirulina, which can be utilized as a dietary supplement in the aquaculture, but it also improves water quality and reduces water usage in high-density fish farms with restricted water exchange. Integrating Spirulina into traditional Recirculating Aquaculture Systems (RAS) appears to be a great fish farming integrated technique.
Downloads
References
Abdel-Tawwab, M., & Ahmad, M. H. (2009). Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquaculture Research, 40(9), 1037-1046.
Adel, M., Conti, G. O., Dadar, M., Mahjoub, M., Copat, C., & Ferrante, M. (2016). Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: a food safety issue. Food and chemical toxicology, 97, 135-140.
Ayala J, F., & Bravo B, R. (1982). Utilization of animal wastes for Spirulina growth. In 7. Reunion Anual. Resumenes de Comunicaciones y Programas, Valdivia (Chile), 11-12 Nov 1982.
Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Vinodhini, S., Priyadharshini, S. S., & Vidya, A. G. (2015). Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis. Environmental Monitoring and Assessment, 187(6), 1-10.
Belay, A., Kato, T., & Ota, Y. (1996). Spirulina (Arthrospira): potential application as an animal feed
supplement. Journal of Applied Phycology, 8(4), 303-311.
Cain, K. D., Grabowski, L., Reilly, J., & Lytwyn, M. (2003). Immunomodulatory effects of a bacterial-derived β-1, 3 glucan administered to tilapia (Oreochromis nilotocus L.) in a Spirulina-based diet. Aquaculture Research, 34(13), 1241- 1244.
Çelekli, A., & Bozkurt, H. (2011). Bio sorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination, 275(1-3), 141-147.
Chang, Y., Wu, Z., Bian, L., Feng, D., & Leung, D. Y. (2013). Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied energy, 102, 427-431.
Chen, F., Zhang, Y., & Guo, S. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology letters, 18(5), 603-608.
Cheng, J., Lu, H., He, X., Yang, W., Zhou, J., & Cen, K. (2017). Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. Bioresource technology, 238, 650- 656.
Cheunbarn, S., & Peerapornpisal, Y. (2010). Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int. J. Agric. Biol, 12(4), 586-590.
Chopra, K., & Bishnoi, M. (2008). Antioxidant profile of Spirulina: a blue green microalga. Spirulina in Human Nutrition and Health, 101-118.
Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological reviews, 47(4), 551-578.
Dal Bosco, A., Gerencsér, Z., Szendrő, Z., Mugnai, C., Cullere, M., Kovàcs, M., ... & Dalle Zotte, A. (2014). Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat science, 96(1), 114-119.
Duncan, P. L., & Klesius, P. H. (1996). Effects of feeding Spirulina on specific and nonspecific immune responses of channel catfish. Journal of Aquatic Animal Health, 8(4), 308-313.
Dural, M., Göksu, M. Z. L., & Özak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food chemistry, 102(1), 415-421.
Ebeling, J. M., & Timmons, M. B. (2012). Recirculating aquaculture systems. Aquaculture production systems, 1, 245-277.
El-Kassas, H. Y., Heneash, A. M., & Hussein, N. R. (2015). Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding. Journal of Genetic Engineering and Biotechnology, 13(2), 145-155.
El-Sayed, A. F. M. (1994). Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture, 127(2-3), 169-176.
FAO Aquaculture Department, the State of World Fisheries and Aquaculture Food and Agriculture Organization of the United Nations, Rome (2018), p. 2430
Fernández-Palacios, H., Izquierdo, M. S., Robaina, L., Valencia, A., Salhi, M., & Vergara, J. (1995). Effect of n− 3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture, 132(3-4), 325-337.
Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., & Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579.
Grinde, B., Lie, Ø., Poppe, T., & Salte, R. (1988). Species and individual variation in lysozyme activity in fish of interest in aquaculture. Aquaculture, 68(4), 299-304.
Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The true value of Spirulina. Journal of agricultural and food chemistry, 68(14), 4109-4115.
Hirahashi, T., Matsumoto, M., Hazeki, K., Saeki, Y., Ui, M., & Seya, T. (2002). Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. International Immunopharmacology, 2(4), 423-434.
Izquierdo, M. S., Fernandez-Palacios, H., & Tacon, A. G. J. (2001). Effect of broodstock nutrition on reproductive performance of fish. Aquaculture, 197(1-4), 25-42.
Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., & Lin, H. (2015). Red, green, and blue luminescence by carbon dots: full color emission tuning and multicolor cellular imaging. Angewandte Chemie International Edition, 54(18), 5360-5363.
Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., ... & Seo, J. (2019). Efficient, stable and scalable perovskite solar cells using poly (3- hexylthiophene). Nature, 567(7749), 511- 515.
Kamilya, D., Sarkar, S., Maiti, T. K., Bandyopadhyay, S., & Mal, B. C. (2006). Growth and nutrient removal rates of Spirulina platensis and Nostoc muscorum in fish culture effluent: a laboratory-scale study. Aquaculture Research, 37(15), 1594- 1597.
Khalil, S. R., Reda, R. M., & Awad, A. (2017). Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine. Fish & shellfish immunology, 67, 119-128.
Khanzadeh, M., Esmaeili Fereidouni, A., & Seifi Berenjestanaki, S. (2016). Effects of partial replacement of fish meal with Spirulina platensis meal in practical diets on growth, survival, body composition, and reproductive performance of three spot gourami (Trichopodus trichopterus)(Pallas, 1770). Aquaculture international, 24(1), 69-84.
Kwak, H. W., Kim, M. K., Lee, J. Y., Yun, H., Kim, M. H., Park, Y. H., & Lee, K. H. (2015). Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal. Algal Research, 7, 92-99.
Lababpour, A. (2017). A simultaneous Spirulina biomass production and brine desalination in an auto trophic culture. Desalination and Water Treatment, 79, 135-141.
Leema, J. M., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., & Karthikayulu, S. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource technology, 101(23), 9221-9227.
Liu, Q., Huang, Y., Zhang, R., Cai, T., & Cai, Y. (2016). Medical application of Spirulina platensis derived C-phycocyanin. Evidence-Based Complementary and Alternative Medicine, 2016.
Macari, V., Rudic, V., Gudumac, V., Pistol, G., Putin, V., Rotaru, A., & Baker, Z. (2020). Effects of food supplemented with ZooBioR product in young chickens on the functional state of the liver.
Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57.
Malakootian, M., Mortazavi, M. S., & Ahmadi, A. (2016). Heavy metals bioaccumulation in fish of southern Iran and risk assessment of fish consumption.
Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied microbiology and biotechnology, 96(3), 631-645.
Nandeesha, M. C., Gangadhara, B., Manissery, J. K., & Venkataraman, L. V. (2001). Growth performance of two Indian major carps, catla (Catlacatla) and rohu (Labeorohita) fed diets containing different levels of Spirulina platensis. Bioresource Technology, 80(2), 117- 120.
National Research Council. (2011). Nutrient requirements of fish and shrimp. National academies press.
Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of fish diseases, 35(2), 83-108.
Otte, G., & Rosenthal, H. (1979). Management of a closed brackish water system for high-density fish culture by biological and chemical water treatment. Aquaculture, 18(2), 169-181.
Pati, D., & Habibi, H. R. (2002). Involvement of protein kinase C and arachidonic acid pathways in the gonadotropin-releasing hormone regulation of oocyte meiosis and follicular steroidogenesis in the goldfish ovary. Biology of reproduction, 66(3), 813- 822.
Phang, S. M., Miah, M. S., Yeoh, B. G., & Hashim, M. A. (2000). Spirulina cultivation in digested sago starch factory wastewater. Journal of Applied Phycology, 12(3), 395-400.
Pradhan, J., Das, S., & Das, B. K. (2014). Antibacterial activity of freshwater microalgae: A review. African Journal of Pharmacy and Pharmacology, 8(32), 809-818.
Prema, D. (2009). Importance of water quality in marine life cage culture.
Ragap, H. M., Khalil, R. H., & Mutawie, H. H. (2012). Immunostimulant effects of dietary Spirulina platensis on tilapia Oreochromis niloticus. Journal of Applied Pharmaceutical Science, 2(2), 26.
Rajasekaran, A., Venkatasubramanian, G., Berk, M., & Debnath, M. (2015). Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neuroscience & Biobehavioral Reviews, 48, 10-21.
Ramakrishnan, C. M., Haniffa, M. A., Manohar, M., Dhanaraj, M., Arockiaraj, A. J., & Arunsingh, S. V. (2008). Effects of probiotics and spirulina on survival and growth of juvenile common carp (Cyprinus carpio).
Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and bioenergy, 30(6), 537-542.
Ravi, M., De, S. L., Azharuddin, S., & Paul, S. F. (2010). The beneficial effects of Spirulina focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements, 2, 73-83.
Reddy, M. C., Subhashini, J., Mahipal, S. V. K., Bhat, V. B., Reddy, P. S., Kiranmai, G., & Reddanna, P. (2003). C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide stimulated RAW 264.7 macrophages. Biochemical and biophysical research communications, 304(2), 385-392.
Sadovsky, D., Brenner, A., Astrachan, B., Asaf, B., & Gonen, R. (2016). Biosorption potential of cerium ions using Spirulina biomass. Journal of rare earths, 34(6), 644- 652.
Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68- 74.
Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina–From growth to nutritional product: A review. Trends in food science & technology, 69, 157-171. 57. Sushma, A. K., & Sharma, P. (2021). Therapeutic and Nutritional aspects of Spirulina in Aquaculture. Journal of Agriculture and Aquaculture, 3(1).
Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.
Talpur, A. D., Ikhwanuddin, M., & Bolong, A. M. A. (2013). Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture, 400, 46-52.
Trenzado, C. E., Morales, A. E., & de la Higuera, M. (2008). Physiological changes in rainbow trout held under crowded conditions and fed diets with different levels of vitamins E and C and highly unsaturated fatty acids (HUFA). Aquaculture, 277(3-4), 293-302.
Velasquez, S. F., Chan, M. A., Abisado, R. G., Traifalgar, R. F. M., Tayamen, M. M., Maliwat, G. C. F., & Ragaza, J. A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). Journal of applied phycology, 28(2), 1023-1030.
Vonshak, A. (Ed.). (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC press.
Watanabe, T., & VassalloAgius, R. (2003). Broodstock nutrition research on marine finfish in Japan. Aquaculture, 227(1-4), 35- 61.
Watanuki, H., Ota, K., Tassakka, A. C. M. A., Kato, T., & Sakai, M. (2006). Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture, 258(1-4), 157-163.
Wuang, S. C., Khin, M. C., Chua, P. Q. D., & Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal research, 15, 59-64.
Yadav, K. K., & Trivedi, S. P. (2009). Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere, 77(11), 1495-1500.
Yeganeh, S., Teimouri, M., & Amirkolaie, A. K. (2015). Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Research in Veterinary Science, 101, 84-88.
Zhang, F., Man, Y. B., Mo, W. Y., & Wong, M. H. (2020). Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Reviews in Aquaculture, 12(2), 582-599.
Zhou, W., Li, Y., Gao, Y., & Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource technology, 245, 10-17.