Oxidative Stress in Plasmodium: Role of Glutathione Revisited

Authors

  • Gaurav Kapoor Department of Zoology, Rajkiya Kanaya Mahavidalaya (RKMV), Shimla-171001, Himachal Pradesh, India.

DOI:

https://doi.org/10.48165/

Keywords:

Malaria, Plasmodium, Glutathione, Antioxidant, Oxidative stress

Abstract

Malaria is still one of the three leading infectious disease  in the world. Plasmodium, unicellular eukaryotic parasite  responsible for the disease is under immense oxidative  stress during the erythrocytic stages of its life cycle. The  parasite overcomes the oxidative stress generated  endogenously and by host immune system through its  antioxidant and redox systems. Plasmodium possesses  glutathione and thioredoxin redox systems with  overlapping but distinct functions that help it to maintain  redox state. Glutathione is the most abundant low  molecular weight thiol redox buffer in all living cells that  is detrimental for the maintenance of intracellular redox  status. Glutathione functions as an antioxidant protecting  cells against the deleterious effects of oxidant free  radicals and also in detoxification process reactions in  parasite. Interfering with glutathione redox system of  parasite can be a novel way to combat the disease. The  present review describes the recent findings in role and  mechanism of glutathione in maintaining the redox status  during oxidative stress in infection with Plasmodium 

Downloads

Download data is not yet available.

References

Alayash, A.I. (2004). Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov, 3, 152-159.

Arruda, M.A., Rossi, A.G., Freitas, M.S., Bajra, F.C., Graca, S.A.V. (2004) Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK and NF-kB. J Immunol, 173, 2023- 2030.

Atamna, H. and Ginsburg, H. (1993). Origin of reactive oxygen reactive species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol, 61, 231- 234.

Atmana, H., Pascarmona, G., Ginsburg, H. (1994). Hexose monophosphate shunt activity in intact Plasmodium falciparum infected erythrocytes and in free parasites. Mol BiochemParasitol, 67, 79-89.

Banyal, H.S. & Fitch, C.D. (1982). Ferriprotoporphorin IX binding substances and the mode of action of chloroquine against malaria. Life Sci, 31, 1137-1142.

Becker, K., Tilley, L., Vennerstrom, J.L., Roberts, D., Rogerson, S., Ginsburg,. H (2004). Oxidative stress in malaria parasite infected erythrocytes: host parasite interactions. Int J Parasitol, 34, 163-189.

Berman, P.A., Human, L., Freese, J.A. (1991). Xanthin oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro. J Clin Invest, 88, 1848- 1855.

Brunnet, L.R. (2001). Nitric oxide in parasitic infection. Int Immunopharmacol,1, 1457-1467.

Buchhloz, K., Putrianti, Ed et al (2010). Molecular genetics evidence for the in vivo roles of the two major NADPH dependent disulphide reductases in the malaria parasite. J Biol Chem,285,37388- 37395.

Campanale, N., Nickel, C. et al, (2003). Identification and characterization of heme-interacting proteins in the malaria parasite Plasmodium falciparum. J Biol Chem, 278, 27354-27361.

Chandra, P., D’Souza, V., D’Souza, B. (2006). Comparative study on lipid peroxidation and antioxidant vitamin E and C in falciparum and vivax malaria. Ind J Biochem, 21, 103-106.

Clark, I.A., Cowden, W.B. (2003). The pathophysiology of falciparum malaria. PharmacolTherapeau, 99, 221-260.

Colon-Lorenzo, E., Colon-Lopez, D., Vega Rodrigues, J et al, (2020). Structure-Based screening of Plasmodium berghei glutathione S-Transferase identifies CB-27 as novel antiplasmodial compound. Front Pharmacol, 11, 246-262

Denke, S.M., Fanburg, B.L. (1989). Regulation of cellular glutathione. Am J Physiol, 257, L163-L173.

Famin, O., Ginsburg, H. (2003). The treatment of Plasmodium falciparum infected with chloroquine leads to accumulation of ferriprotoporphorin IX bound to particular parasite proteins and to the inhibition of the parasite 6- phosphogluconate dehydrogenase. Parasite, 10, 31-50.

Gilberger, T.W., Schirmer, R.H., Walter, R.D., Muller, S. (2000). Deletion of parasite specific insertions and mutations of the catalytic triad in glutathione reductase from chloroquine sensitive Plasmodium falciparum 3d7. Mol Biochem Parasitol, 107, 169-179.

Griffith, O.W. (1999). Biological and pharmacological regulation of mammalian glutathione synthesis. Free RadicBiol Med, 27, 922-935.

Guha, M., Kumar, S., Choubey, V., Maity, P., Bandopadhaya, U. (2006). Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. FASEB J, 20, E439-E449.

Holmgren, A. (2000). Antioxidant functions of thioredoxin and glutaredoxin systems. Antioxid Redox Signal, 2, 811-820.

Hunt, N.H., Stocker, R. (1990). Oxidative stress and redox status of malaria infected erythrocytes. Blood Cells, 16, 499-526.

Kapoor, G., Banyal, HS (2009). Glutathione reductase and thioredoxin reductase: novel antioxidant enzymes from Plasmodium berghei. Korean J Parasitol, 4, 91- 95.

Kawazu, S., Ikenouse, N. et al (2005). Role of 1-Cys peroxiredoxin in heme detoxification in the human malaria parasite Plasmodium falciparum. FEBS J, 272, 1784-1791.

Liochev, S.I., Fridovich, I. (1999). Superoxide and iron: partners in crime. IUBMB Life,48, 157-161.

Maroziene, A., Lesanavicius, M., Davioud Charvet et al (2019). Antiplasmodial activity of nitroaromatic compounds: correlation with their reduction potential and inhibitory action on plasmodium falciparum glutathione reductase. Molecules, 24 (24), 4509.

Marva, E., Chevion, M., Golenser, J. (1991). The effects of free radicals induced by paraquat and copper on the in vitro development of Plasmodium falciparum. Free Rad Rev, 12-13, 137-146.

Meierjohann, S., Walter, R.D., Muller, S. (2002). Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine sensitive and chloroquine resistant Plasmodium falciparum. Biochem J, 368, 761-768.

Meierjohnn, S., Walter, R.D., Muller, S. (2002). Glutathione synthetase from Plasmodium falciparum. Biochem J, 363, 833- 838.

Omodeo-Sale, F., Motti, A., Basilico, N., Parapini, S., Olliaro, P., Taramalli, D. (2003) Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood, 102, 705-711.

Pastrana-Mena, R., Dinglasan, R.R. et al (2010). Glutathione reductase null-malaria parasites have normal blood stage growth but arrested during development in mosquitoe. J BiolChem, 285, 27045-27056.

Percario, S., Moreira, D.R., Gomes, B.A.Q. et al, (2012). Oxidative stress in Malaria. Int J Mol Sci, 13, 16346-16372.

Petterson, F., Vogt, A. M. et al, (2005) Whole body imaging of sequestration of Plasmodium falciparum in rat. Infect Immun, 73, 7736-7746.

Phiri, H., Montgomery, J., Molyneux, M., Craig, A. (2009) Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions. Malar J, 8, 214-221.

Pizzino, G., Irrera, N. et al (2017). Oxidative stress: Harms and benefits for human health. Oxidative Med and Cellular Longivity, 2017, 1-13.

Potter, S.M., Mitchell, A.J. et. al. (2005). Phagocyte derived reactive oxygen species do not influence the progression of murine blood stage malaria infection. Infect Immunol, 73, 4941-4947.

Rahlfs, S., Fischer, M., Becker, K. (2001). Plasmodium falciparum possesses a classical glutaredoxin and a second glutaredoxin like protein with PICOT homology domain. J Biol Chem, 276, 37133-37140.

Reed, D.J. (1990). Glutathione: toxicological implications. Annu Rev PharmacolToxicol, 30, 603-631.

Schwarzer, E., Kuhun, H., Valente, E., Arese, P. (2003) Malaria-parasitized erythrocytes and haemozoin non enzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood, 101, 722-728.

Sharma, S.K., Banyal, H.S. (2007). Glutathione synthetase in Plasmodium berghei. J ParasitDis, 31, 33-37.

Sies, H. (1999). Glutathione and its role in cellular functions. Free Radic Bio lMed, 27, 916-921.

Sobolewski, P., Gramaglia, I., Frangos, J.A. et al. (2005). Plasmodium berghei resists killing by reactive oxygen species. Infect and Immunol, 73, 6704-6710.

Sohail, M., Kaul, A., Raziuddin, M., Adak, T. (2007). Decreased glutathione-S transferase activity: Diagnostic and protective role in vivax malaria. Clin Biochem, 40, 377-382.

Srivastava, S., Alhomida, A.S., Siddiqui, N.J., Pandey, V.C. (2001). Changes in rodent erythrocyte methemoglobin reductase system produced by two malaria parasites viz Plasmodium yoeliinigeriensis and Plasmodium berghei. Comp Biochem Physiol Biochem Mol Bio, 12, 725-731.

Srivastava, S.K., Beutler, E. (1969). The transport of oxidised glutathione from human erythrocytes. J Biol Chem, 244, 9-16.

Taniyama, Y., Griendling, K.K. (2003). Reactive oxygen species in the vasculature: molecular and cellular

***********************************************

mechanisms. Hypertension,42(6), 1075- 1081.

Taylor-Robinson, A.W., Philips, R.S., Steven, A. et al. (1993). The role of Th1 and Th2 cells in a rodent malaria infection. Science, 260, 1931-1934.

Tilley, L., Loria, P., Floey, M. (2001). Chloroquine and other quinoline antimalarials. In: Rosenthal PJ, Ed. Antimalarial chemotherapy. Towtowa NJ: Humana Press 87-122.

Winoqrad, E., Sherman, W. (2004). Malaria infection induces a conformational change in erythrocyte band 3 protein. Med BiochemParasitol, 138, 83-87.

World Health Organisation (2020). World malaria report 2020. https//who.int/publication.

Zuluaga, L., Pabon, A. et al. (2007). Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria. Malar J, 6, 47.

Published

2022-06-15

How to Cite

Oxidative Stress in Plasmodium: Role of Glutathione Revisited . (2022). Bulletin of Pure & Applied Sciences- Zoology , 41(1), 149–157. https://doi.org/10.48165/