Does Time restriction feeding reverse the High fat diet induced obesity in Drosophila melanogaster?

Authors

  • Mohammad S Al-Maqashah Ph.D. Research Scholar, Chronobiology lab, Department of Studies in Zoology, Manasagangothri, University of Mysore, Mysuru, Karnataka 570005, India.
  • V Shakunthala Associate Professor, Department of Studies in Zoology, Manasagangothri, University of Mysore, Mysuru, Karnataka 570005, India.
  • C S Damini Ph.D. Research Scholar, Chronobiology lab, Department of Studies in Zoology, Manasagangothri, University of Mysore, Mysuru, Karnataka 570005, India.

DOI:

https://doi.org/10.48165/

Keywords:

Drosophila melanogaster, TRF, HFD, SOD, catalase

Abstract

Obesity and its co-morbidity are the most challenging  tasks for the current health care system. It is a  multifactorial disorder either due to genetic  predisposition, high calorie-dense diet, circadian  disruption, etc. Circadian disruption is due to  people’s altered lifestyle choices have resulted in  increased obesity that can be measured in terms of  lipid profiles, overweight, and endogenous  antioxidant level. As consequence of this increased  diabetes and cardiovascular problems among the  current generation. The present study is an attempt to  understand the importance of disciplined lifestyle and eating at the right time. Many studies in this regard  have revealed time-restriction feeding and its benefits.  The current study aims to investigate the adverse  effects of a high-fat diet on odd-time eating and high fat diet with that of time-restriction feeding (TRF). To  address this problem, we choose Drosophila  melanogaster flies that were fed with different food  regime as high-fat diet (HFD), a normal diet (ND) as a  control, HFD+TRF and ND+TRF. The biochemical  assays were used to detect obesity, the stress and TRF  normalizes the triglyceride level to reduce  endogenous antioxidants in the HFD group was  observed and TRF has an effective response to obesity  by reducing body adiposity caused by a high-fat diet. 

Downloads

Download data is not yet available.

References

Aebi, H. (1984). Catalase in vitro Methods Enzymol 105, 121–126.

Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., & Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity, 17(11), 2100-2102

Allison, D., Zannolli, R., Faith, M., Heo, M., Pietrobelli, A., Vanltallie, T., . . . Heymsfield, S. (1999). Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. International journal of obesity, 23(6), 603-611.

Asher, G., & Sassone-Corsi, P. (2015). Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell, 161(1), 84-92.

Barber, A. F., Erion, R., Holmes, T. C., & Sehgal, A. (2016). Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin producing cells. Genes & development, 30(23), 2596-2606

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1), 276-287.

Bondia-Pons, I., Ryan, L. & Martinez, J. A. (2012). Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 68, 701–711.

Cabrera, D., Young, M. W., & Axelrod, S. (2020). Time-restricted feeding prolongs lifespan in Drosophila in a peripheral clock dependent manner. bioRxiv.

Chaix, A., & Zarrinpar, A. (2015). The effects of time-restricted feeding on lipid metabolism and adiposity. Adipocyte, 4(4), 319-324.

Chandrashekara, K., Popli, S., & Shakarad, M. (2014). Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. Age, 36(5), 1-14.

Che, T., Yan, C., Tian, D., Zhang, X., Liu, X., & Wu, Z. (2021). Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients

with type 2 diabetes: a randomised controlled trial. Nutrition & metabolism, 18(1), 1-10.

Chen, S., Yang, Q., Chen, X., Tian, Y., Liu, Z., & Wang, S. (2020). Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food & function, 11(1), 524-533.

Chung, A. P., Gurtu, S., Chakravarthi, S., Moorthy, M., & Palanisamy, U. D. (2018). Geraniin protects high-fat diet-induced oxidative stress in Sprague Dawley rats. Frontiers in nutrition, 5, 17.

Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., . . . Varady, K. A. (2020). Effects of 4-and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell metabolism, 32(3), 366-378. e363.

Clark, A. G., & Keith, L. E. (1988). Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics, 119(3), 595-607.

Deota, S., & Panda, S. (2021). New Horizons: Circadian control of metabolism offers novel insight into the cause and treatment of metabolic diseases. The Journal of Clinical Endocrinology & Metabolism, 106(3), e1488-e1493.

Diop, S. B., Birse, R. T., & Bodmer, R. (2017). High fat diet feeding and high throughput triacylglyceride assay in Drosophila melanogaster. Journal of visualized experiments: JoVE(127).

Ehlen, J. Christopher, Allison J. Brager, Julie Baggs, Lennisha Pinckney, Cloe L. Gray, Jason P. DeBruyne, Karyn A. Esser, Joseph S. Takahashi, and Ketema N. Paul. (2017). Bmal1 function in skeletal muscle regulates sleep. Elife, 6, e26557.

Fielenbach, N., & Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes & development, 22(16), 2149-2165.

Freeman, L. R., Haley-Zitlin, V., Rosenberger, D. S., & Granholm, A.-C. (2014). Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutritional neuroscience, 17(6), 241-251.

Gill, S., Le, H. D., Melkani, G. C., & Panda, S. (2015). Time-restricted feeding attenuates age-related cardiac decline in

Aebi, H. (1984). Catalase in vitro Methods Enzymol 105, 121–126.

Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., & Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity, 17(11), 2100-2102

Allison, D., Zannolli, R., Faith, M., Heo, M., Pietrobelli, A., Vanltallie, T., . . . Heymsfield, S. (1999). Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. International journal of obesity, 23(6), 603-611.

Asher, G., & Sassone-Corsi, P. (2015). Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell, 161(1), 84-92.

Barber, A. F., Erion, R., Holmes, T. C., & Sehgal, A. (2016). Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin producing cells. Genes & development, 30(23), 2596-2606

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1), 276-287.

Bondia-Pons, I., Ryan, L. & Martinez, J. A. (2012). Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 68, 701–711.

Cabrera, D., Young, M. W., & Axelrod, S. (2020). Time-restricted feeding prolongs lifespan in Drosophila in a peripheral clock dependent manner. bioRxiv.

Chaix, A., & Zarrinpar, A. (2015). The effects of time-restricted feeding on lipid metabolism and adiposity. Adipocyte, 4(4), 319-324.

Chandrashekara, K., Popli, S., & Shakarad, M. (2014). Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. Age, 36(5), 1-14.

Che, T., Yan, C., Tian, D., Zhang, X., Liu, X., & Wu, Z. (2021). Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients

with type 2 diabetes: a randomised controlled trial. Nutrition & metabolism, 18(1), 1-10.

Chen, S., Yang, Q., Chen, X., Tian, Y., Liu, Z., & Wang, S. (2020). Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food & function, 11(1), 524-533.

Chung, A. P., Gurtu, S., Chakravarthi, S., Moorthy, M., & Palanisamy, U. D. (2018). Geraniin protects high-fat diet-induced oxidative stress in Sprague Dawley rats. Frontiers in nutrition, 5, 17.

Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., . . . Varady, K. A. (2020). Effects of 4-and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell metabolism, 32(3), 366-378. e363.

Clark, A. G., & Keith, L. E. (1988). Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics, 119(3), 595-607.

Deota, S., & Panda, S. (2021). New Horizons: Circadian control of metabolism offers novel insight into the cause and treatment of metabolic diseases. The Journal of Clinical Endocrinology & Metabolism, 106(3), e1488-e1493.

Diop, S. B., Birse, R. T., & Bodmer, R. (2017). High fat diet feeding and high throughput triacylglyceride assay in Drosophila melanogaster. Journal of visualized experiments: JoVE(127).

Ehlen, J. Christopher, Allison J. Brager, Julie Baggs, Lennisha Pinckney, Cloe L. Gray, Jason P. DeBruyne, Karyn A. Esser, Joseph S. Takahashi, and Ketema N. Paul. (2017). Bmal1 function in skeletal muscle regulates sleep. Elife, 6, e26557.

Fielenbach, N., & Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes & development, 22(16), 2149-2165.

Freeman, L. R., Haley-Zitlin, V., Rosenberger, D. S., & Granholm, A.-C. (2014). Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutritional neuroscience, 17(6), 241-251.

Gill, S., Le, H. D., Melkani, G. C., & Panda, S. (2015). Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science, 347(6227), 1265-1269.

Hartmann, J. T., Beggel, S., Auerswald, K., & Geist, J. (2016). Determination of the most suitable adhesive for tagging freshwater mussels and its use in an experimental study of filtration behaviour and biological rhythm. Journal of Molluscan Studies, 82(3), 415-421.

Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., . . . Fitzpatrick, J. A. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell metabolism, 15(6), 848- 860.

Heinrichsen, E. T., & Haddad, G. G. (2012). Role of high-fat diet in stress response of Drosophila.

Jafari, M. (2010). Drosophila melanogaster as a model system for the evaluation of anti aging compounds. Fly, 4(3), 253-257.

Jumbo-Lucioni, P., Ayroles, J. F., Chambers, M. M., Jordan, K. W., Leips, J., Mackay, T. F., & De Luca, M. (2010). Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC genomics, 11(1), 1-13.

Jung, U. J. & Choi, M. S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J. Mol. Sci. 15, 6184–6223 (2014)

Karatas, F., Karatepe, M., & Baysar, A. H. M. E. T. (2002). Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Analytical biochemistry, 311(1), 76-79.

Kohsaka, A., Laposky, A. D., Ramsey, K. M., Estrada, C., Joshu, C., Kobayashi, Y., ... & Bass, J. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell metabolism, 6(5), 414- 421.

Manoogian, E. N., & Panda, S. (2017). Circadian rhythms, time-restricted feeding, and healthy aging. Ageing research reviews, 39, 59-67

Melkani, G. C., & Panda, S. (2017). Time restricted feeding for prevention and treatment of cardiometabolic disorders. The Journal of physiology, 595(12), 3691-3700

Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological chemistry, 247(10), 3170-3175.

Morris CJ, Purvis TE, Mistretta J, Scheer FA. (2016). Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J Clin Endocrinol Metab. 101(3), 1066– 1074.

Nayak, N., & Mishra, M. (2021). High fat diet induced abnormalities in metabolism, growth, behavior, and circadian clock in Drosophila melanogaster. Life Sciences, 281, 119758.

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95(2), 351-358.

Palanker, Laura, Jason M. Tennessen, Geanette Lam, and Carl S. Thummel. (2009). "Drosophila HNF4 regulates lipid mobilization and β-oxidation." Cell metabolism 9(3), 228-239.

Patke, A., Young, M. W., & Axelrod, S. (2020). Molecular mechanisms and physiological importance of circadian rhythms. Nature reviews Molecular cell biology, 21(2), 67-84.

Ruan, W., Yuan, X., & Eltzschig, H. K. (2021). Circadian rhythm as a therapeutic target. Nature Reviews Drug Discovery, 20(4), 287-307.

Stone, J. E., Postnova, S., Sletten, T. L., Rajaratnam, S. M., & Phillips, A. J. (2020). Computational approaches for individual circadian phase prediction in field settings. Current Opinion in Systems Biology, 22, 39-51

Sundaram, S., & Yan, L. (2016). Time restricted feeding reduces adiposity in mice fed a high-fat diet. Nutrition research, 36(6), 603-611.

Trindade de Paula, M., Poetini Silva, M. R., Machado Araujo, S., Cardoso Bortolotto, V., Barreto Meichtry, L., Zemolin, A. P. P., . . . Posser, T. (2016). High-fat diet induces oxidative stress and MPK2 and HSP83 gene expression in Drosophila melanogaster. Oxidative medicine and cellular longevity, 2016.

Trinh, I., & Boulianne, G. L. (2013). Modeling obesity and its associated disorders in Drosophila. Physiology, 28(2), 117-124.

Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., ... & Bass, J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 308(5724), 1043-1045.

Ugbaja, R. N., Akinloye, D. I., James, A. S., Ugwor, E. I., Kareem, S. E., David, G., . . . Oyebade, O. E. (2020). Crab derived dietary chitosan mollifies hyperlipidemia induced oxidative stress and histopathological derangements in male albino rats. Obesity Medicine, 20, 100300.

Villanueva, J. E., Livelo, C., Trujillo, A. S., Chandran, S., Woodworth, B., Andrade, L., . . . Melkani, G. C. (2019). Time restricted feeding restores muscle function in Drosophila models of obesity and

***********************************************

circadian-rhythm disruption. Nature communications, 10(1), 1-17.

Wolf, G. (2007). Serum retinol-binding protein: a link between obesity, insulin resistance, and type 2 diabetes. Nutrition reviews, 65(5), 251-256.

You, M., Considine, R. V., Leone, T. C., Kelly, D. P., & Crabb, D. W. (2005). Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology, 42(3), 568-577.

Zwaan, B., Bijlsma, R., & Hoekstra, R. F. (1995). Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution, 49(4), 635-648.

Published

2022-06-15

How to Cite

Does Time restriction feeding reverse the High fat diet induced obesity in Drosophila melanogaster? . (2022). Bulletin of Pure & Applied Sciences- Zoology , 41(1), 56–66. https://doi.org/10.48165/