Comparative Impact of Fungicides on Biomolecules of Eisenia fetida
DOI:
https://doi.org/10.48165/Keywords:
Acute toxicology, Agrochemicals, Eisenia fetida, Oxidative stress, Antioxidant content, Phenolic contentAbstract
Tebuconazole and copper oxychloride are two widely used fungicides in Haryana against fungi harming banana, apple, potato and cucurbits, chili, paddy, onions, etc. Both fungicides induce free radicle induced oxidative stress by disturbing the antioxidant defense mechanism and other biochemical mechanisms. Even the copper from copper oxychloride accumulates in soil and poses a serious ecological threat to the environment and the non target organisms, like farmer’s friend earthworms. In the present study, the acute toxicity (LC50) using probit analysis, antioxidant enzymes like Superoxide dismutase (SOD), Catalase (CAT), Peroxidase (POD), Ascorbate peroxidase (APX), Glutathione S transferase (GST) and lipid peroxidation (MDA) activity in the whole-body extract while total antioxidant (TAC) and phenolic content (TPC) using the coelomic fluid of earthworm. All the objectives of Eisenia fetida were determined spectrophotometrically after exposure to 60 and 80% of the calculated LC50
Downloads
References
Sinha, R. K, Herat, S., Soni, B. K., Ghosh, A., Pate, U., and Prabhune, M. (2012). Vermiculture biotechnology – socioeconomic development and protection of human health and environment by the use of earthworms. International Journal of Environmental Science and Engineering Research (IJESER), 3(2), 85-106.
Omar, H. M., Ibraheim, Z. Z., El-Shimy, N. A., and Ali, R. S. (2012). Anti inflammatory, antipyretic and antioxidant activities of the earthworms extract. Journal of Biology and Earth Sciences, 2(1), 10-17.
Ciğerci, İ. H., Ali, M. M., Kaygısız, Ş. Y., Kaya, B., and Liman, R. (2018). Genotoxic assessment of different sizes of iron oxide nanoparticles and ionic iron in earthworm (Eisenia hortensis) coelomocytes by comet assay and micronucleus test. Bulletin of environmental contamination and toxicology, 101(1), 105-109.
Homa, J., Olchawa, E., Stürzenbaum, S. R., Morgan, A. J., and Plytycz, B. (2005). Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environmental Pollution, 135(2), 275-280.
Chen, J., Saleem, M., Wang, C., Liang, W., and Zhang, Q. (2018). Individual and combined effects of herbicide tribenuron methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Scientific reports, 8(1), 1-9.
Bart, S., Barraud, A., Amossé, J., Péry, A. R., Mougin, C., and Pelosi, C. (2019). Effects of two common fungicides on the reproduction of Aporrectodeacaliginosa in natural soil. Ecotoxicology and environmental safety, 181, 518-524.
Alves, P. R. L., Cardoso, E. J. B. N., Martines, A. M., Sousa, J. P., and Pasini, A. (2013). Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere, 90(11), 2674-2682
Saint-Denis, M., Labrot, F., Narbonne, J. F., and Ribera, D. (1998). Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Archives of Environmental Contamination and Toxicology, 35(4), 602- 614.
Song, Y., Zhu, L. S., Wang, J., Wang, J. H., Liu, W., and Xie, H. (2009). DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil biology and biochemistry, 41(5), 905-909.
Balamurugan, M., Parthasarathi, K., Cooper, E. L., and Ranganathan, L. S. (2007). Earthworm paste (Lampitomauritii, Kinberg) alters inflammatory, oxidative, haematological and serum biochemical indices of inflamed rat. European review for medical and pharmacological sciences, 11(2), 77.
Aldarraji, Q. M., Halimoon, N., and Majid, N. M. (2013). Antioxidant activity and total phenolic content of earthworm paste of Lumbricusrubellus (red worm) and Eudrilus eugenia (African night crawler). Journal of Entomology and Nematology, 5(3), 33-37.
Di, N., Zhang, K., Hladun, K. R., Rust, M., Chen, Y., Zhu, Z., Liu, T., and Trumble, J.T. (2020). Joint effects of cadmium and copper on Apismelliferaforgers and larvae. Comparative Biochemistry and Physiology Part C, 237, 108839. Ahttps://doi.org/10.1016/j.cbpc.2020.108 839.
Helling, Reinecke, and Reinecke, (2000). Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicology and Environmental Safety, 46,108-116.
Farsani, A.T., Arabi, M., and Shadkhast, M. (2021). Ecotoxicity of chlorpyrifos on earthworm Eisenia fetida (Savigny 1826): Modifications in oxidative biomarkers. Comparative Biochemistry and Physiology Part C. 249,109145. https://doi.org/10.1016/j.cbpc.2021.10914 5.
OECD, 1984. Organization for Economic Co-operation and Development Test 207: earthworm acute toxicity tests Organization for Economic Co-operation and Development OECD Guidelines for Testing of Chemicals.
Thakur, S. S., Yadav, S. (2018). Exploration of earthworms of India through online digital library. Earthworms sajal ray Intech open, 10, 5772.
Garcia, M. (2004). Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. PhD Thesis.
DeSilva, P. M. C. S., and Van Gestel, C. A. M. (2009). Development of alternative artificial soil for earthworm toxicity testing in tropical countries. Applied soil ecology, 43, 170-174.
Kumar, S., and Singh, S. M. (2016). Histopathological Changes in two Earthworm Species after O, O Diethyl S- (Ethylthio) Methyl Phasphoroditl Toxicity. Int J of Sci Env and Tech, 6(5), 2898-2906.
Goven, A., Chen, S., Fitzpatrick, L., and Venablests, B. (1994). Lysozyme activity in earthworm (lumbricusterrestris) coelomic fluid and coelomocytes: enzyme assay for immunotoxicity of xenobiotics. Environmental and Chemistry, 13(4), 607- 613.
Fourie, F., Reinecke, S., and Reinecke, A. (2007). The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicology and Environmental Safety, 67, 361–368.
Devatha, C. P., Jagadeesh, K., and Patil, M. (2018). Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environmental Nanotechnology Monitoring and Management, 9, 85–94. https://doi.org/10.1016/j.enmm.2017.11.0 07
Kumari, T., and Shukla, V. (2021). Validation of phytochemicals antioxidant activity and characterization of green synthesized iron nanoparticles: a comparison. Journal of Applied and Natural Science, 13(3), 1102 – 1110. https://doi.org/10.31018/ jans.v13i3.2894.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem,72, 248–254.
Kochba, J., Lavee, S., and Spiegel-Roy, P. (1977). Differences in peroxidase activity
and isoenzymes in embryogenic and non embryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol, 18, 463– 467. https://doi.org/10.1093/oxfordjournals.p cp a075455.
Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology,
(5), 867–880. https://doi.org/10.1093/oxfordjournals.p cp.a076232.
Claiborne, A. (1985). Catalase activity In: Greenwald RA (ed) Handbook of methods for oxygen research CRC Press Boca Raton FL, 283–284.
Xiang, R., and Wang, D. N. (1990). The improvement of lipid peroxidation thiobarbituric acid spectrophotometry. Prog BiochemBiophys, 17, 241–243 (in Chinese).
Anwar, F., Hussain, A.I., Sherazi, S.T.H., Bhanger, M.I., 2009b. Changes in composition and antioxidant and antimicrobial activities of essential oil of fennel (Foeniculum vulgare Mill.) fruit at different stages of maturity. J. Herbs, Spices Med. Plants 15, 187– 202.
Hussain, A.I., Chatha, S.A.S., Noor, S., Khan, Z.A., Arshad, M.U., Rathore, H.A., Sattar, M.Z., 2012. Effect of extraction techniques and solvent systems on the extraction of antioxidant components from peanut (Arachis hypogaea L.) Hulls. Food Anal. Methods 5, 890–896.
Sultana, B., Anwar, F., Przybylski, R., 2007. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 104, 1106–1114.
Gu, H., Yuan, Y., Cai, M., Wang, D., and Lv, W. (2021) Toxicity of isoprocarb to earthworms (Eisenia fetida): Oxidative stress, neurotoxicity, biochemical responses and detoxification mechanisms. Environmental Pollution 290, 118038. https://doi.org/10.1016/j.envpol.2021.118 038.
Ferguson, G. D., and Bridge, W.J. (2019). The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biology, 24, 101171. https://doi.org/10.1016/j.redox.2019.1011 71.
Sinha, S., and Saxena, R. (2006). Effect of iron on lipid peroxidation and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 62, 1340- 1350.
Hertwig, B., Streb, P., and Feierabend, J. (1992). Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiology, 100(3), 1547– 1553.
https://doi.org/10.1104/pp.100.3.1547. 36. Cui, N., Xu, H., Yao, S., He, Y., Zhang, H., and Yu, Y. (2018). Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Environmental Science and Pollution Research, 25(25), 25468-25475.
Bart, S., Pelosi, C., Nélieu, S., Lamy, I., ***********************************************
Péry, A. R. R. (2020). An energy-based model to analyze growth data of earthworms exposed to two fungicides. Environmental Science and Pollution Research, 27, 741–750 https://doi.org/10.1007/s11356-019-
-z
Pose, E., Rial-Otero, R., Paradelo, M., and Lopez´ -Periago, J. E. (2009). Influence of soil characteristics on copper sorption from a copper oxychloride fungicide. J. Agric. Food Chem, 57, 2843–2848.
Rong, H., Wang, C., Liu, H., Zhang, M., Yuan, Y., Pu, Y., Huang, J., and Yu, J. (2020). Biochemical toxicity and potential detoxifcation mechanisms in Earthworms Eisenia fetida exposed to sulfamethazine and copper. Bulletin of Environmental Contamination and Toxicology, 105, 255– 260. https://doi.org/10.1007/s00128-020- 02927-5.