Screening of Spider Venom Peptides and Molecular Docking of FLT3 and LCK

Authors

  • Durgesh M Agase Assistant Professor, Department of Zoology, Govt Jatashankar Trivedi College, Balaghat, Madhya Pradesh 481101, India

DOI:

https://doi.org/10.48165/bpas.2023.42A.1.13

Keywords:

Anticancer Peptides, Chemotherapy, Spider Venom

Abstract

The drawbacks of traditional chemotherapy include its  inability to dissolve in water, lack of selectivity, and  multidrug resistance. The use of anticancer peptides is a  unique therapeutic approach against cancer cells. In this  In-silico work, the kinase inhibition activity for both  chosen target molecules (Flt3 and Lck protein) was  evaluated in order to find a possible anti-leukemic spider  venom peptide. Out of the 11 spider venom peptides,  Lycosin-I peptide (from Lycosa singoriensis) for Lck and  Latarcin 2a peptide (from Lachesana tarabaevi) for Flt3  were suggested as the best lead peptides for the creation  of anti-leukemic drugs. 

Downloads

Download data is not yet available.

References

Bhujbal, S., Keretsu, S., & Cho, S. (2023). Design of New Therapeutic Agents Targeting FLT3 Receptor Tyrosine Kinase Using Molecular Docking and 3D-QSAR Approach. Letters In Drug Design & Discovery, 17(5), 585-596.

Cardoso, F., & Lewis, R. (2019). Structure–Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Frontiers in Pharmacology, 10. doi: 10.3389/fphar.2019.00366

Chidambaram, M., Manavalan, R., & Kathiresan, K. (2011). Nanotherapeutics to overcome conventional cancer chemotherapy limitations. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques, 14(1), 67–77.

Davletov, B., Ferrari, E., & Ushkaryov, Y. (2012). Presynaptic neurotoxins: An expanding array of natural and modified molecules. Nature Reviews Neuroscience, 13(7), 461-473. doi:10.1038/nrn3314

Dubovskii, P. V., Vassilevski, A. A., Kozlov, S. A., Feofanov, A. V., Grishin, E. V., & Efremov, R. G. (2015). Latarcins: versatile spider venom peptides. Cell & Molecular Life Sciences, 72(23), 4501-4522.

Glenn, F., & Hamilton, M. C. H. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annual Review of Entomology, 58(1), 475-496.

He, Q., Duan, Z., Yu, Y., Liu, Z., Liu, Z., & Liang, S. (2013). The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis. Plos ONE, 8(11), e81357. doi: 10.1371/journal.pone.0081357

Isbister, G. K., & Gray, M. R. (2002). A prospective study of 750 definite spider bites, with expert spider identification. QJM, 95(11), 723-731.

King, G. F., & Hardy, M. C. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annual Review of Entomology, 58, 475–496

Klint, J. K., Senff, S., Rupasinghe, D. B., Er, S. Y., Herzig, V., Nicholson, G. M., & King, G. F. (2012). Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon: official journal of the International Society on Toxinology, 60(4), 478–491.

Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774-797

Kuzmenkov, A. I., Sachkova, M. Y., Kovalchuk, S. I., Grishin, E. V., & Vassilevski, A. A. (2016). Lachesana tarabaevi, an expert in membrane-active toxins. Biochemical Journal, 473(16), 2495–2506.

Mashkani, B., Tanipour, M. H., Saadatmandzadeh, M., Ashman, L. K., & Griffith, R. (2016). FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies. European Journal of Pharmacology, 776, 156–166. doi: 10.1016/j.ejphar.2016.02.048.

Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Research, 37, 498-503. doi: 10.1093/nar/gkp323.

Nimmrich, V., & Gross, G. (2012). P/Q-type calcium channel modulators. British Journal of Pharmacology, 167, 741–759

Pineda, S. S., Undheim, E. A., Rupasinghe, D. B., Ikonomopoulou, M. P., & King, G. F. (2014). Spider venomics: implications for drug discovery. Future Medicinal Chemistry,

(15), 1699–1714. doi: 10.4155/fmc.14.103 17. Rash, L. D., & Hodgson, W. C. (2009). Pharmacology and biochemistry of spider venoms. Toxicon, 40, 225–254.

Saez, N. J., Senff, S., Jensen, J. E., Er, S. Y., Herzig, V., Rash, L. D., & King, G. F. (2010). Spider-Venom Peptides as Therapeutics. Toxins, 2(12), 2851-2871.

Saidijam, M., Yavari, B., Mahjub, R., Raigani, M., & Soleimani, M. (2018). The Potential Use of Peptides in Cancer Treatment. Current Protein & Peptide Science, 19(8), 759-770.

Shen, H., Xie, Y., Ye, S., He, K., Yi, L., & Cui, R. (2018). Spider peptide toxin lycosin-I induces apoptosis and inhibits migration of prostate cancer cells. Experimental Biology and Medicine, 243(8), 725–735.

Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids, 1–13. doi: 10.1155/2012/967347

Ting, W., Meng, W., Wenfang, W., & Qianxuxan, L. (2019). Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis., 25, e146318.

Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., & Rghava, G.

(2013). In Silico Models for Designing and Discovering Novel Anticancer Peptides. Scientific Reports, 3, 2984

Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., & Rghava, G. (2013). In Silico Models for Designing and Discovering Novel Anticancer Peptides. Scientific Reports, 3, 2984

Vorontsova, O. V., Egorova, N. S., Arseniev, A. S., & Feofanov, A. V. (2011). Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie, 93(2), 227-241.

Wallace, A., Laskowski, R., & Thornton, J. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design And Selection, 8(2), 127-134.

Wang, L., Wang, Y. J., Liu, Y. Y., Li, H., Guo, L. X., Liu, Z. H., Shi, X. L., & Hu, M. (2014). In vitro potential of Lycosin-I as an alternative antimicrobial drug for treatment of multidrug-resistant Acinetobacter baumannii infections. Antimicrobial Agents and Chemotherapy, 58(11), 6999-7002. doi: 10.1128/AAC.03279-14.

Windley, M. J., Herzig, V., & Dziemborowicz, S. A. (2012). Spider-venom peptides as bioinsecticides. Toxins, 4, 191–227.

Zhang, G., Ren, P., Gray, N. S., Sim, T., Liu, Y., Wang, X., & He, Y. (2008). Discovery of pyrimidine benzimidazoles as Lck inhibitors: Part I. Bioorganic & Medicinal Chemistry Letters, 18(20), 5618–5621. doi: 10.1016/j.bmcl.2008.08.104.

Published

2023-06-16

How to Cite

Screening of Spider Venom Peptides and Molecular Docking of FLT3 and LCK . (2023). Bulletin of Pure & Applied Sciences- Zoology , 42(1), 149–156. https://doi.org/10.48165/bpas.2023.42A.1.13