Effect of Malathion (An Organophospahte) on Electrophoretic Banding Patterns of Esterase Isozymes in Gill, Liver, Brain Tissue of Fresh Water Fish Channa Punctatus (Bloch)

Authors

  • Venkateswara Rao Mandalapu Department of Zoology, SR and BGNR Government Arts and Science College, Khammam, Telanga
  • Venkaiah Yanamala Department of Zoology, Kakatiya University, Warangal, Telangana State Telangana 506009, India

DOI:

https://doi.org/10.48165/bpas.2023.42A.1.12

Keywords:

Electrophoretic banding patterns, Esterase Isozymes, Channa punctatus, α-naphthyl acetate, PAGE, Malathion (an Organophosphate), different time intervals

Abstract

This investigation was conducted to compare the  electrophoretetic banding patterns of esterase isozyme  in the gill, liver, and brain tissues of the freshwater fish  Channa punctatus (Bloch) at 24 hours, 48 hours, 72  hours, and 96 hours after exposure to Malathion (an  Organophosphate) to those at the control group.  Quantitative analysis of the esterase isozymes was  performed using 7.5 native polyacrylamide gel  electrophoresis (PAGE) stained with -naphthyl acetate  as substrate. The relative mobilities of three esterase  Isozyme bands in gill, liver, and brain tissue were  determined to be 0.60.05, 0.40.05, and 0.30.05,  respectively; these bands were designated Est-1, Est-2,  and Est-3, respectively. Control samples from the gill, liver, and brain all had all three esterase bands. Both Est 2 and Est-3 Esterase Isozyme bands in gill and liver  tissue were eliminated when fish were subjected to  Malathion (an Organophosphate) for 72 and 96 hours,  respectively. Malathion induced greater damage in Est-1  and Est-3 brain tissue than in Est-2. 

Downloads

Download data is not yet available.

References

Abhijith B.D., Ramesh M., Poopal R.K. (2016). Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Egyptian German Society for Zoology, The journal of Basic &

Applied Zoology, 77, 31-40.

Aldridge, W.N. (1953). Serum esterases 1: Two types of esterases (A & B) hydrolysing p-nitro phenyl acetate, propionate and butyrate, and a method for their determination. Biochem. J. 53,110-117.

Barua S., Alam M.M.R., Simonsen V. (2004). Genetic variation in four hatchery populations of that pangas, Pangasius hypothalamus of Mymensingh region in Bangladesh using allozyme marker. Pak. J. Biol. Sci, 7(2), 144-149. D

Begum R.A., Shahjahan R.M., Nur F.M., Rahman H., Kabir M.A. (2010). Analysis of esterase isozyme banding in some tissues of Nile tilapia and Genetically Improved Farmed Tilapia Oreochromis niloticus L, Bangladesh J. Zool. 38, 119-126.

Bheem Rao. T., Tirupath I.K., and Venkaiah. Y. (2018). Comparative study of Electrophoretic patterns of Esterases in Various tissues of Fresh water cat fish Heteropneustes fossilis (Bloch). Br. J. Pharm. Med. Res., 3(1), 840-845.

Callaghan, A., Boiroux, V., Raymofld, M. and N. Pasteur. (1994). Prevention of changes in electrophoretic mobility of overproduced esterase from organophosphate-resistant mosquitoes of

the Culex pipiens complex. Medical Veterinary and Entomology, 8, 391-394.

Clarke (1964). Simplified ''Disc'' (Polyacrylamide Gel) Electrophoresis. Ann N Y Acad Sci. 121, 428–436.

Ch. Shankar, Thirupathi K., Bheem Rao T., Venkaiah Y. Effect of Chlorpyrifos on esterase Isozyme banding patterns in muscle and brain of fresh water fish Heteropneustes fossilis. Research journal of life sciences, Bioinformatics, pharmaceuticals and Chemical sciences (RJLBPCS), 5(3), 465-472.

Christensen, K., Harper, B., Luukinen, B., Buhl, K., & Stone, D. (2009). Chlorpyrifos general fact sheet. Corvallis: National Pesticide Information Center, Oregon State University Extension Services.

Galloway TS, Handy RD. (2003). Immunotoxicity of Organophosphorous pesticides. Ecotoxicology, 12, 344-369.

Holmes, R.S., Master, C.J., Web, E.C. (1968). A comparative study of vertebrates esterase multiplicity. Comp. Biochem. Physiol, 26, 837- 852.

Holmes, R.S. Master, C.J. (1967). The developmental multiplicity and isozyme status of cavianesterases. Biochem. Biophys Acta. 132(2), 379-399.

Hadiar Rahman, 2009 thesis. https://www.researchgate.net/publication /346376083

Hawa J., Gope P.S., Alam M.S., Reza MD., Shahjahan (2016). Electrophoretic Banding pattern of Esterase Isozyme in different tissues of Puntius sophore (Cyprinidae: Cypriniformes), J. Asiat. Soc. Bangladesh, Sci. 42(2), 201-208.

John, P.J. (2007). Alteration of certain blood parameters of freshwater teleost Mystusvittatus after chronic exposure to Metasystox and Sevin. Fish Physiol. Biochem., 33, 15–20.

I. Kabeer Ahmad Sahib, D. Sailatha and K.V. Rmana Rao. (1980). Impact of malathion Acetycholinesterase in the tissues of the fish Tilapia mosambica (Peters)-A time course study. J. Bio Sci., 2, 37-41.

Jenssen, BM (2003). Marine pollution: the future challenge is to link human and wildlife studies. Environ Health Perspect. 111 (4), A198–A199.

Lushchak, V.I., (2011). Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101, 13-30.

Markert C.L, Moller F. (1959). Multiple forms of Enzymes tissue, ontogenic and species specific pattern. Proc. Nat. Acad. Sci. 45, 753-763.

Menezes De, Loro C.C., daFonseca V.L., Cattaneo M.B., Pretto R., dos Santos A., Miron D., Santi A., (2011). Oxidative parameters of Rhandiaquelen in responce to commercial herbicide containing clomazone and recovery pattern. Pestic. Biochem. Physiol. 100, 145-150.

Modesto, D.A., Martinez, C.B.R., (2010). Round up causes oxidative stress in liver and inhibits acetyl cholinesterase in muscle and brain of fish Prochiloduslineatus. Chemosphere 78, 294-299

Monterio, D.A., Rantin, F.T., Kalinin, A.L., 2009. The effects of Selenium on oxidative stress biomarkers in the fresh water fish matrinxa, Bryconcephalus exposed to organophosphate insecticide Folisuper 600 BR (Methyl parathion). Comp. Biochem. Physiol. 149, 40-49.

Peakall D. (1992). Animal Biomarkers as pollutants indicators. Chapman & Hall. London. U.K., 291pp.

Reddy. M.T. and Lakshmipathi, V. (1988). Esterases in Amblypharyngodon mola., Curr. Science 57(1), 24-27.

Rabeya A., MstArzu P., Halima J., Sharmin Ferdewsi Rakhi A.H.M., Mohsinul R. and Zakir H. (2020). Toxic effects of an organophosphate pesticide, envoy 50 SC on the histopathological, hematological, and brain acetylcholinesterase activities in stinging catfish (Heteropneustes fossilis). The Journal of Basic and Applied Zoology, 81, 47.

Rajani. A. and Revathy K. Effect of combination pesticide on acetylcholine esterase activity in fresh water fish Danio rerio. International Journal of Pharma and Bio Sciences. 6(1), B1305-B1310.

Rajaiah, V. And Venkaiah (2007). Effect of parathion esterase patterns of Channa punctatus. J. Aquatic. Biol. 22(1), 181-185.

Raju N., Venkaiah Y. (2013). Electrophoretic patterns of proteins in the secretion of Parotoid gland and its extract in Bufo melanostictus (Schneider). International

Journal of Advanced Research, 1(6), 169-172. 29. Robinson AS. (1986). Genetic sexing in Anopheles stephensi using dieldrin resistance. American Mosq. Control Assc. 2, 93-95.

Swapna P., Reddy T.R. (2017). Electrophoretic Patterns of Esterases from different tissues of Arion artensis. International Journal of Pharma Research and Health Sciences. 5(1), 1563-1566.

Tamkeen N., Rangoonwala S, and Krishita Sanyal K. (2020). Effect of pesticides on survival behavior, feeding pattern, growth and mortality of the marine edible fish Lepturacanthus savala, IJCRT, 8(6), 1522- 1536

Thompson HM, Walker. (1992). Blood esterases as indicators of exposure to Organophosphorous and Carbamate insecticides. In: Fossi, M.C., Leonzio, C., (Eds). Non destructive Biomarkers in vertebrates. Lewis Publishers, Boca, Raton, pp.37-62

Tovar–Juarez E, Rodriguez–Gutierrez J, Cobos-Gasca VM. (2016). Acetyl cholinesterase Activity in Brain Tissue of Profundulus punctatus and Poecilliabutleri

from Water shed of Southern Mexico. Research &Reviews: Research journal of biology. 4(2), 26-33.

Tripathi, G., Shasmal, J. (2011). Concentration related responses of chlorpyriphos in antioxidant, anaerobic and protein synthesizing machinery of the fresh water fish, Heteropneustes fossilis. Pestic. Biochem. Physiol. 99, 215-220

Turner, B.J. Genetic divergence of Death Valley pup fish populations. Species specific Esterases .Comp.Biochem. Physiol., 1973; 46(1): 67-70

Uner, N., Oruc, E.O., Sevgiler, Y., Sahin N., Durmaz H. and Usta, D. (2006). Effect of Diazinon on Acetylcholenesterase activity on lipid peroxidation in the brain of Orechromisniloticus. Environ. Toxicol. Pharmacol. 21, 241-245.

Venkaiah V, Lakshmipathi V. (2006). Electrophoretic studies on comparison of esterases patterns of two cat fishes and the toad, J. Aquatic Biol., 2(2), 170–174.

Venkateswara Rao. M., Venkaiah. Y. (2022). Electrophoretic Banding Pattern of Esterase

Isozymes in fresh water fish Channa punctatus. Bulletin of Pure and Applied Sciences Section-A. Zoology, 41A(1), 34-39.

Wayne S. Leibel. (1988). An analysis of esterase activities from surgeonfish tissues

yields evidence of an atypical pseudocholinesterase. Comp. Biochem. Physiol. 91B (3), 437-447.

Published

2023-06-16

How to Cite

Effect of Malathion (An Organophospahte) on Electrophoretic Banding Patterns of Esterase Isozymes in Gill, Liver, Brain Tissue of Fresh Water Fish Channa Punctatus (Bloch) . (2023). Bulletin of Pure & Applied Sciences- Zoology , 42(1), 140–148. https://doi.org/10.48165/bpas.2023.42A.1.12