Excitation Transfer between Distant Quantum Dots in Photonic Crystal Waveguide

Authors

  • Manish Raj Research Scholar, University Department of Physics, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India.
  • Ravi Ranjan Research Scholar, P. G. Department of Physics, Rajendra College, Chapra, J.P. University, Chapra, Bihar 841301, India.

DOI:

https://doi.org/10.48165/

Keywords:

Excitation transfer, Quantum DoT, Waveguide, Photonic Crystal, Anderson Localization, Interaction, Simulation

Abstract

We have theoretically studied the excitation transfer between distant quantum dots  in a photonic crystal waveguide. Due to Anderson localization of disordered  position and size of the photonic crystal holes was found to have a highly nontrivial  effect on the interaction. We have simulated realistic systems with different  magnitudes of the disorder and showed that while localization indeed has a  profound effect on both range and magnitude of the dot-dot excitation transfer rate  at several μm distance. The average excitation transfer rate was found to be larger  than 10eV at distance on the order of 10m . The transfer time to this corresponded  was on the order of 10 ps, close to the single qubit operation time and much shorter  than the decoherence time measured. The obtained results were found in good  agreement with previous results. 

References

Sapienza. L, Thyrrestrup. H, Stobbe. S, Garcia. P. D, Smolka. S and Lodahl. P, (2010), Science, 327, 1352.

Schwagmann. A, Kalliakos. S, Farrer. I, Griffiths. J. P, Jones. G. A. C, Ritchee. D. A and Shieds. A. J, (2011), Appl. Phys. Lett. 99, 261108.

Hoang.T. B, Beetz. J, Midolo. L, Skacel. M, Lermer. M, Kamp. M, Hoffing. S, Bulet. L, Chauvin. N and Fiore. A, (2012), Appl. Phys. Lett. 100, 061122.

Gao. J, Combrie. S et al (2013), Scientific Reports, 3, 1994.

Albert. F, Sivalertpon. K et al. (2013), Nat. Commun. 4, 1747.

Parascanddo. G and Savona. V, (2005), Phys. Rev. B, 71, 045335.

Tarel. G, Parascandolo. G and Savona. V, (2008), Phys. Status Solidi B, 245, 1085. 8. Yao. P and Hughes. S, (2009), Opt. Express. 17, 11505.

Minkor. M and Savona. V, (2013), Phys. Rev. B, 87, 125306.

Nielsen. M. A and Chuang. I. L, (2004), Quantum Computation and Quantum Information and the Natural Sciences, Ist ed. (Cambridge University, New York, 2004).

Portalupi. S. L et al. (2011), Phys. Rev. B, 84, 045423.

Akahane. Y, Asane. A, Song. B and Noda. S, (2003), Nature, 425, 944.

Viasnoff-Schwoob. E. et al., (2005), Phys. Rev. Lett. 95, 183901.

Chari. Dhaunduru. Vardhani (2008), J-BPAS, Vol-27D, Phys, No-2, p-17. 15. Singh Sukhdeo and Chaudhar Pradeep Kumar, (2018), J-BPAS, Vol-37D, Phys, No-1, p-23. 16. Alam Abdul Sattar and Kumar Ashok, (2019), J-BPAS, Vol – 38D, Phys, No-1, p-46. 17. Faron. A, Fushman, Englund. D, Stoltz. N, Petoff. P and Vuckovic. J, (2008), Nat. Phys. 4, 859. 18. Huisman. S. R, et al. (2012), Phys. Rev. B, 86, 155154.

Topolancik, J, Ilic. B and Vollmer. F, (2007), Phys. Rev. Lett. 99, 253901.

Published

2020-11-15

How to Cite

Excitation Transfer between Distant Quantum Dots in Photonic Crystal Waveguide . (2020). Bulletin of Pure and Applied Sciences – Physics, 39(2), 202–206. https://doi.org/10.48165/