Effects of Externally Applied Electric and Magnetic Fields on Bose Einstein Condensation of Charged Bose Gas
DOI:
https://doi.org/10.48165/Keywords:
Bose-Einstein condensation, Bose-gas, density of state, chemical potential, non interacting, inhomogeneousAbstract
We have studied the effects of the externally applied electric and magnetic fields on Bose-Einstein condensation of the charged Bose gas. We have used a model density of states which takes the finite sample size into account to calculate the thermodynamic quantities. We have obtained condensate fraction, chemical potential, total energy and specific heat of the system using the semi classical density of states. We have studied the possibility for achieving Bose-Einstein condensation in three dimensional non interacting charged Bose gas under the cross electric and magnetic fields. The external fields made the system inhomogeneous and altered the Bose-Einstein condensation characteristics compared to the homogeneous case. We have found that the non interacting system of charged boson undergo Bose- Einstein condensation when external electric and magnetic fields were applied. The discontinuity in the specific heat was found as a function of external potentials. The obtained results were found in good agreement with previously obtained results.
References
Griffin. A, Snoke. D. W, Stringari. S, (1995), Bose-Einstein Condensation (Cambridge University Press, Cambridge).
Salje. E.K.H, Alexandrov. A. S., Liang. W.Y., (1995), Polarons and Bipolarons in High Tc Superconductors and Related Materials, (Cambridge University Press, Cambridge). 3. Schafroth. R, (1995), Phys. Rev. 100, 463.
Toms. D.J, (1994), Phys. Rev. B, 50, 3120.
Daicic. J, Franke. N.E, (1997), Phys. Rev. B, 55, 2760.
Rojas. H.P, (1996), Phys. Lett. B, 379, 148.
Standen. G, Toms. D.J, Cond. Mat. / 9712141.
Brosens. F, Devreese. J.T., Lemmens. L.F, (1997), Phys. Rev. E, 55, 227. 9. Anderson. M.H, Ensher. J.R, Matthews. M.R, Wieman. C.E, Cornell. E.A, (1995), Science, 269, 198.
Han. D.J, Wynar. R.H, Courtellie. Ph., Heinzen. D.J, (1998), Phys. Rev. A, 57, R 4114. 11. Silvera. I.F, Griffin. A, Snoke. D.W, Stringari. S, (1995), Bose-Einstein Condensation, (Cambridge University Press, Cambridge.)
Dalfovo. F, Giorgini. S, Pitaevski. L.P, Stringari. S, (1999), Rev. Mod. Phys. 71, 463. 13. Parkins. A.S, Walls. D.F, (1998), Phys. Rep. 303, 1.
Fujita. M, Kubo. T, Kurosuima. S, Usefuji. T., Kawashima. K and Yamada. K, (2003), Phys. Rev. B, 67, 014514.
Kurahashi. K, Matsushita. H, Fujita. M and Yamada. K, (2002), J. Phys. Soc. Jpn 71, 910. 16. Kumar. A, Gaim. M, Steininger. D, Levyyeyati. A, Marin- Rodero. A, Huttel A. K and Strunk. C, (2014), Phys. Rev. B, 89, 075428.
Jarillo- Herrero. P, Van Dam. J.A. and Kourwennoven. L.P, (2006), Nature (London), 439, 953. 18. Pallecchi. E, Gaass. M, Ryndyk. D.A and Strunk. C, (2008), Appl. Phys. Lett. 93, 072501. 19. Mourik. V., Zuo. K, Frolov. S.M, Plissard. S.R, Bakkers. E.P. Am and Kouwenhoven. L.P. (2012), Science, 336, 1003.