Effects of Externally Applied Electric and Magnetic Fields on Bose Einstein Condensation of Charged Bose Gas

Authors

  • Deepak Kumar Department of Physics, B.S. College, Simraha, Saharsa-, Bihar 852107, India
  • J P Choudhary Associate Professor and Ex. Head, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwa, Bihar 852128, India.
  • Ashok Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.

DOI:

https://doi.org/10.48165/

Keywords:

Bose-Einstein condensation, Bose-gas, density of state, chemical potential, non interacting, inhomogeneous

Abstract

We have studied the effects of the externally applied electric and magnetic fields on  Bose-Einstein condensation of the charged Bose gas. We have used a model density  of states which takes the finite sample size into account to calculate the  thermodynamic quantities. We have obtained condensate fraction, chemical  potential, total energy and specific heat of the system using the semi classical density  of states. We have studied the possibility for achieving Bose-Einstein condensation  in three dimensional non interacting charged Bose gas under the cross electric and  magnetic fields. The external fields made the system inhomogeneous and altered the  Bose-Einstein condensation characteristics compared to the homogeneous case. We  have found that the non interacting system of charged boson undergo Bose- Einstein  condensation when external electric and magnetic fields were applied. The  discontinuity in the specific heat was found as a function of external potentials. The  obtained results were found in good agreement with previously obtained results.

References

Griffin. A, Snoke. D. W, Stringari. S, (1995), Bose-Einstein Condensation (Cambridge University Press, Cambridge).

Salje. E.K.H, Alexandrov. A. S., Liang. W.Y., (1995), Polarons and Bipolarons in High Tc Superconductors and Related Materials, (Cambridge University Press, Cambridge). 3. Schafroth. R, (1995), Phys. Rev. 100, 463.

Toms. D.J, (1994), Phys. Rev. B, 50, 3120.

Daicic. J, Franke. N.E, (1997), Phys. Rev. B, 55, 2760.

Rojas. H.P, (1996), Phys. Lett. B, 379, 148.

Standen. G, Toms. D.J, Cond. Mat. / 9712141.

Brosens. F, Devreese. J.T., Lemmens. L.F, (1997), Phys. Rev. E, 55, 227. 9. Anderson. M.H, Ensher. J.R, Matthews. M.R, Wieman. C.E, Cornell. E.A, (1995), Science, 269, 198.

Han. D.J, Wynar. R.H, Courtellie. Ph., Heinzen. D.J, (1998), Phys. Rev. A, 57, R 4114. 11. Silvera. I.F, Griffin. A, Snoke. D.W, Stringari. S, (1995), Bose-Einstein Condensation, (Cambridge University Press, Cambridge.)

Dalfovo. F, Giorgini. S, Pitaevski. L.P, Stringari. S, (1999), Rev. Mod. Phys. 71, 463. 13. Parkins. A.S, Walls. D.F, (1998), Phys. Rep. 303, 1.

Fujita. M, Kubo. T, Kurosuima. S, Usefuji. T., Kawashima. K and Yamada. K, (2003), Phys. Rev. B, 67, 014514.

Kurahashi. K, Matsushita. H, Fujita. M and Yamada. K, (2002), J. Phys. Soc. Jpn 71, 910. 16. Kumar. A, Gaim. M, Steininger. D, Levyyeyati. A, Marin- Rodero. A, Huttel A. K and Strunk. C, (2014), Phys. Rev. B, 89, 075428.

Jarillo- Herrero. P, Van Dam. J.A. and Kourwennoven. L.P, (2006), Nature (London), 439, 953. 18. Pallecchi. E, Gaass. M, Ryndyk. D.A and Strunk. C, (2008), Appl. Phys. Lett. 93, 072501. 19. Mourik. V., Zuo. K, Frolov. S.M, Plissard. S.R, Bakkers. E.P. Am and Kouwenhoven. L.P. (2012), Science, 336, 1003.

Published

2020-11-15

How to Cite

Effects of Externally Applied Electric and Magnetic Fields on Bose Einstein Condensation of Charged Bose Gas . (2020). Bulletin of Pure and Applied Sciences – Physics, 39(2), 163–168. https://doi.org/10.48165/