Polarization Anisotropy of Photoluminescence Spectra in Gallium Arsenide under Different Surface Waves

Authors

  • Shashi Ranjan Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.
  • Sippy Kumari Research Scholar, University Department of Physics, B.R.A. Bihar University, Muzaffarpur, , Bihar 842001, India
  • Ashok Kumar Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.

DOI:

https://doi.org/10.48165/

Keywords:

Polarization, dynamic, anisotropy, photoluminescence, surface wave, microscopic, emission, oscillation, quantum dot

Abstract

We have studied the dynamic polarization anisotropy of photoluminescence spectra  in gallium arsenide under different surface waves configurations by applying  microscopic photoluminescence setup. We have found a periodic emission energy  oscillation due to the strain induced band gap modulation. Time related polarization  anisotropy spectra obtained under the one dimensional standing surface acoustic  waves revealed that the photoluminescence polarization anisotropy became the  stronger when the band gap energy reached its minimum value and that the  polarized direction was perpendicular to the surface acoustic wave propagating  direction. We have also found that the time resolved photoluminescence spectra  from the dynamic quantum dots exhibited emission energy oscillations similar to the  results for the one dimensional standing surface acoustic waves, while no  polarization anisotropy appeared. It was also found that dynamic quantum dots  formed by the two dimensional surface acoustic waves due to interference between  two orthogonally propagating surface acoustic wave beams. The obtained results  were compared with previously obtained results. 

 

References

Sagwa. T, Ando. H and Kanbe. H, (1997), Phys., Rev. B, 56, 1958.

Santos. P. V, Alsina. F, Stotz. J. A.H, Hey. R, Eshlaghi. S and Weik. A. D, (2004), Phys. Rev. B. 69, 155318.

Rocke. C, Zimmermann. S, Wixforth. A, Kotthaus. J. P, Bohm. G and Weimann. G, (1997), Phys. Rev. Lett. 78, 4099.

Shilton. J. M., Talyanski. V. I, Pepper. M, Ritchie. D. A., Frost. J. E. F., Ford. C. J. B, Smith. C. G. and Jones. G. A.C, (1996), J. Phys. Condens Matter, 8, L531.

Santos. P. V, (1999), Appl. Phys. Lett. 74, 4002.

Sogawa. T, Santos. P. V, Zhang. S. K, Eshlaghi. S, Wieck. A. D and Ploog. K. H, (2001), Phys. Rev. B. 63, 121307 (R).

Stotz. J. A. H, Hey. R, Santos. P. V and Ploog. K. H, (2005), Nat. Mater. 4, 585. 8. Couto. O. D. D, Iikawa. F, Rudolph. J, Hey R and Santos. P. V, (2007), Phys. Rev. Lett. 98, 036603.

Alsina. F, Stotz. J. A. H, Hey. R and Santos. P. V, (2004), Solid State Commun. 129, 453. 10. Weisbuch. C and Vinter. B, (1991), Quantum Semiconductor Structures, Fundamentals and applications (Academic. San Diego. C. A. 1991).

Sanada. H, Sogawa. T, Gotoh. H, Onomitsu. K, Kohda. M, Nita. J and Santos. P. V, (2011), Phys. Rev. Lett. 106, 216602.

Alsina. F, Santos. P. V and Hey. R, (2002), Phys. Rev. B, 65, 193301.

Sogawa. T, Sanada. H, Gotoh. H, Yamaguchi. H, Niyashita. S and Santos. P. V, (2007), J. Appl. Phys. Part 2. 46, L758.

Published

2020-11-15

How to Cite

Polarization Anisotropy of Photoluminescence Spectra in Gallium Arsenide under Different Surface Waves . (2020). Bulletin of Pure and Applied Sciences – Physics, 39(2), 145–149. https://doi.org/10.48165/