Lattice Dynamics of Silver

Authors

  • Sunil Kumar Mishra Associate Professor, Department of Physics, L.S. College, B.R.A. Bihar University, Muzaffarpur- 842001, Bihar, India

DOI:

https://doi.org/10.48165/

Keywords:

Screened Coulomb potential, phonon dispersion curve, specific heat, Debye characteristics temperature, phenomenological model, silver nanoparticles

Abstract

 A phenomenological model for the lattice dynamics of silver metal is developed. The  total interaction inside the metal is composed of mainly the interactions between the  ions and the interaction between the ions and electrons. A many parameter potential  corresponding to two-body and three-body interactions is introduced to describe the  forces between ions. The contribution to the potential energy from ion-electron  interaction is considered by a screened Coulomb potential. The theoretical model  developed is employed to obtain the phonon dispersion curves of silver. Computed  phonon frequencies are used to explain the Debye characteristic temperatures at  different temperatures. The computed results for phonon dispersion curves and  Debye characteristic temperatures compare satisfactorily with the experimental  results.

References

. Clark, B. C., D. C. Gazis, and R. F. Wallis, 1964. Frequency spectra of body-centered cubic lattices. Phys. Rev. B, 134: 1486-1491. DOI: 10.1103 / Phys. Rev. 134. A 1486;

. Awasthi, K.N. and S. S. Kushwaha, 1979. Unpaired forces in the study of lattice dynamics of thorium. Canadian Journal of Physics, 57: 1838-1842. DOI: 10.1139/ p 79-254;

. Ramamurthy, V. and M. Satishkumar, 1985. Unified study of lattice dynamics of alkali metals with the use of a tensor force model. Phys. Rev. B, 32: 5471-5474. DOI: 10.1103/Phys. Rev. B .325471;

. Thakur, V. K. and T. N. Singh, 1987. Lattice dynamics of Al and Pb. Phys. Stat. Solidi b, 142: 401-406. DOI: 10.1002/pssb. 2221420208;

. Botelho, G., J. C. Sczancoski, J. Anders, L. Gracia, and E. Longo, 2015. Experimental and theoretical study on the structure, optical properties, and growth of metallic silver nanostructures in Ag3PO4. J. Phys. Chem. C, 119: 6293-6306. DOI: 10.1021/jp512111v;

. Mahdieh, M. H., M. A. Jafarbadi, M. S. Syahkal, and H. Mozaffari, 2017. Investigation of Ag, Al2O3 and TiO2 nanoparticles effects as impurities in laser induced breakdown in distilled water. Physics Letters A, 381: 2397-2403. DOI: 10.1016/j. Physleta.2017.05.037;

. Yang, J., Q. Fan, Y. Yu, and W. Zhang, 2018. Pressure effect of the vibrational and thermodynamic properties of chalcopyrite-type compound AgGaS2: A first-principles investigation. Materials, 11: 1-13. DOI: 10.3390/ma 11122370;

. Liu, A., X. Ren, M. An, J. Zhang, P. Yang, B. Wang, Y. Zhu, & C. Wang, 2014. A combined theoretical and experimental study for silver electroplating. Scientific Reports, 4: 1- 11. DOI: 10.1038/ srep 03837;

. Fabara, A., S. Cuesta, F. Pilaquinga, and L. Meneses, 2018. Computational modeling of the interaction of silver nanoparticles with the lipid layer of the skin. Hindawi, 10: 1-9. DOI: 10.1155/2018/ 4927017;

. Gordienko, A. B., N. G. Kravchenko, and A. N. Sedelnikov, 2010. Ab initio calculations of the lattice dynamics of silver halides. Russian Physics Journal, 53: 692-697. DOI: 10.1007/ s11182- 010-9472-2;

. Morse, P. M., 1929. Diatomic molecules according to the wave mechanics. II .vibrational levels. Phys. Rev., 34: 57-64. DOI: 10.1103/Phys. Rev. 34.57;

. Mishra, S. K. and T. N. Singh, 1988. Lattice dynamics of bcc transition metals. Phys. Stat, Solidi b, 149: 503-510. DOI:10.1002/pssb.2221490211;

. Neighbours, J. R. and G. A. Alers, 1958. Elastic constant of silver and gold. Phys. Rev., 111: 707-712. DOI: 10.1103/Phys. Rev. 111.707;

. Kamitakahara, W. A. and B. N. Brockhouse, 1969. Crystal dynamics of silver. Phys. Letters. A, 29: 630-640. DOI: 10.1016/0375-9601(69) 91142-6;

. Meads, P. F., W. R. Forsythe, and W. F. Giauque, 1941. The heat capacities and entropies of silver and lead from 150 to 3000K. J. Am. Chem. Soc., 63(7): 1902-1905. DOI: 10.1021/ ja 01852a028;

. Agarwal, R. M. and R. P. S. Rathore, 1980. Phonon dispersion in noble metals. Z. Naturforschung A, 35: 1001-1005. DOI: 10.1515/zna-1980-1002;

. Thakur, V. K. and T. N. Singh, 1986. Lattice dynamics of fcc metals. Phys. Stat. Solidi b, 135:

-73. DOI: 10.1002/pssb.2221350106;

. Bertolo, L. A. and M. M. Shukla, 1980. Lattice dynamics of silver and gold on Kreb’s model.

Acta Phys. Pol. A, 57: 141-150. DOI: PASCAL 8030387230;

Published

2020-05-12

How to Cite

Lattice Dynamics of Silver . (2020). Bulletin of Pure and Applied Sciences – Physics, 39(1), 6–12. https://doi.org/10.48165/