The Quantization of a Theory of Charged Scalar Fields

Authors

  • Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037

DOI:

https://doi.org/10.48165/

Keywords:

Generalized Wave Equation, Conserved Current, Charge, Renormalization

Abstract

The quantum theory of the charged scalar field will be developed for an action consistent  with a real component of the equal-time commutator in the near classical limit. A conserved  current is derived, and the charge (5/3)3is times larger than the conventional value. A  connection between the mass hierarchies of the weak and strong nuclear interactions are  found as a result of the theoretical predictions of a mixed theory of vector and pseudoscalar  particles. 

References

. A. Martin, Scattering Theory, Unitarity, Analyticity and Crossing, Lect. Notes Phys. 3, Springer Verlag, Heidelberg, 1969.

. S. M. Roy, Exact Integral Equation for Pion-Pion Scattering involving only Physical Region Particle Waves, Phys. Lett. 36B (1971) 353-356.

. A. Salam and R. Delbourgo, Renormalizable Electrodynamics of Scalar and Vector Mesons, Phys. Rev. 135 (1964) B1398-B1427.

. C. Itzykson and J. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980. [5]. S. Davis, The Equation for the Wavefunction in Nonrelativistic Quantum Mechanics, RFSC- 17-10. [6]. S. Davis, Relativistic Quantum Scalar Fields, Bull. Pure Appl. Sci. Sect. D: Physics, 40 (2021) 25-33.

. C. Moller and L. Rosenfeld, Thoery of Mesons and Nuclear Forces, Nature 143 (1939) 241-242. [8]. J. Schwinger, On a Field Theory of Nuclear Forces, Phys. Rev. 61 (1942) 387. [9]. M. Schein and P. S. Gill, Burst Frequency as a Function of Energy, Rev. Mod. Phys. 11 (1939) 267- 276.

. S. K. Chakrabarty and R. C. Majumdar, On the Spin of the Meson, Phys. Rev. 65 (1944) 206. [11]. W. Pauli and S. Kusaka, On the Theory of the Mixed Pseudoscalar and Vector Meson Field, Phys. Rev. 63 (1943) 400-416.

. R. C. Majumdar, The Theory of Pseudoscalar Meson in Presence of Electromagnetic and Nuclear Fields, Proc. Indian Natl. Science Acad. 11(2) (1945) 109-121.

. P. A. Zayla et al. (Particle Data Group), 2020 Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 083C01.

. S. Davis, The Evaluation of ϕ4 Diagrams in a Quantum Scalar Field Theory, RFSC-17-37. [15]. P. Ramond, Field Theory, A Modern Primer, Benjamin, 1981.

. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4 Theories, World Scientific Publishing, Singapore, 2001.

. M. Daum, R. Frosch and P.-R. Kettle, The Charged and Neutral Pion Masses Revisited, Phys. Lett. 796B (2019) 11-14.

. S. Aoki, et al. Review of Lattice Results concerning Low-energy Particle Physics, Eur. Phys. Journal C 77 (2017) 112: 1-228.

. G. Veneziano, S. Yankielowicz and E. Onofri, A Model for Pion-pion Scattering in Large-N QCD, J. High Energy Phys. 04 (2017) 151: 1-18.

. B. Ananthanarayan, The Low Energy Expansion for Pion-Pion Scattering and Crossing Symmetry in Dispersion Relations, Phys, Rev. D58 (1998) 036002: 1-7

Published

2021-12-15

How to Cite

The Quantization of a Theory of Charged Scalar Fields . (2021). Bulletin of Pure and Applied Sciences – Physics, 40(2), 106–120. https://doi.org/10.48165/