Surface Wave Propagation on Carbon Nanotube Bundle and Characteristics by High Attenuation

Authors

  • Jay Shankar Kumar Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar852128, India.
  • Ashok Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar852128, India.

DOI:

https://doi.org/10.48165/

Keywords:

Surface Wave, Propagation, Carbon Nanotube, Attenuation, Dipole, Resonance, Impedance, Capacitive, Transmission Line, Antenna

Abstract

 We have studied the surface wave propagation on carbon nanotube bundle and its  characteristics by high attenuation. The slow wave propagation along conducting carbon  nanotubes and the high conductivity compared with metallic conductors like copper made  these structures for high frequency applications. The property reduced the size of antenna and  passive circuits. It was found that the complex surface wave propagation has a significant  attenuation coefficient at lower frequency band. This attenuation coefficient induces highly  damping effect which reduces the active part of the dipole length. Thus, dipole lie always  below resonance and input impedance be always capacitive. The conductivity and  electromagnetic wave interaction of the conducting carbon nanotubes have also important  features in comparison with traditional conductors like copper wires of the same size. The  quantum capacitances of the order of the electrostatic capacitance of the transmission line.  This property has two main effects on electromagnetic wave propagation along the carbon  nanotube transmission line, slow wave propagation and high characteristic impedance. The  wave propagation on the arms of the dipole is highly attenuated such that the active part of  the dipole is such smaller than the physical length of the dipole itself. Thus, the dipole always  be a short dipole and could not be resonant in any case. The result shows that the advantage  of size reduction combined with surface wave propagation is used only in high frequency  bands above 100 GHz. The attenuation coefficient has a moderate effect in the frequency  band from 10 to 100 GHz. The resonance mechanism occurred when the incident wave at the  feeding point adds constructively with reflected wave from dipole ends. The obtained results  were found in good agreement with previously obtained results. 

References

. Slepyan. G. Ya, Maksimenko. S. A, Lakhtakia. A, Yevtushenko. O.M and Gusakov. A.V, (1998), Phys. Rev. B, 57, 9485.

. Slepyan. G. Ya, Maksimenko. S. A, Lakhtakia. A, Yevtushenko. O.M and Gusakov. A.V, (1999), Phys. Rev. B, 60, 17136-17149.

. Miyamoto. Y, Rubio. A, Louie. S. G, and Cohen. M. L., (1999), Phys. Rev. B, 60, 13885. [4]. Burke. P. J, (2004), IEEE Trans. Nanotechnology, 3, 331.

. Burke. P. J, Li. S, and Yu. Z (2006), IEEE. Trans. Nanotechnology, 5, 314-334. [6]. Hanson. G. W, (2005), IEEE. Trans. Antennas and Propagation, 53, 3426-3435. [7]. Huang. Y, Yin. W. Y and Liu. Q. H, (2008), IEEE. Trans. Nanotechnology, 7, 331-337. [8]. Fichtner. N, Zhou. X and Russer. P, (2008), Adv. Radio. Sci, 6, 209-211.

. Slepyan. G. Ya, Shuba. M. V., Maksimenko. S. A and Lakhtakia. A, (2006), Phys. Rev. B, 73, 195416. [10]. Maarout. A. A, Kane. C. L. and Mele. E. J, (2000), Phys. Rev. B, 61, 11156. [11]. Dietz. O, Stockmannetal, (2012), Phys. Rev. B, 86, 201106.

. Maradudin. A. A. (2011), Structured Surfaces as Optical Metamaterials, edited by A. A. Maradudin (Cambridge University Press, Cambridge, New York, 2011).

. Zho. W. and Ding. J. W., (2010), Euro Phys. Lett. 89, 57005.

. Francisco. J, Rodriguen. Fortuno and NadarEngheta, (2012), Phys. Rev. B, 85, 115421. [15]. Filter. Robert, Jing-Qi, Carsten Rockstuhi and Ledere Falk, (2012), Phys. Rev. B, 85, 125429. [16]. Vogelgesang. R. and Dmitriev. A, (2010), Analyst. 135, 1175.

. Husang. J. S., Kern. J, Geisler. P, Weinman. P, Kamp. M, Forchel. A, Biagioni. P and Hechf. B, (2010), Nano. Lett. 10, 2105.

. Zhao. Y, Engheta. N and Alu. A, (2011), J. Opt. Soc. Am, B, 28, 1266.

. Kern. A. M. and Martin O. J. F. (2011), Nano. Lett. 11, 482.

. Juan. M. L., Righini. M and Quidant. R, (2011), Nat. Photon. 5, 349.

. Qiong. Li, Zhou. Lan and Sun. C. P, (2014), Phys. Rev. A. 89, 063810.

. Goldstein. M, Devoret. M. H, Houzet. M and Glazman. L. I, (2013), Phys. Rev. Lett. 110, 017002. [23]. Egger. D. J. and Wilhelm. F. K., (2013), Phys. Rev. Lett. 111, 163601.

. Mikki. S. M. and Kishk. A. A. (2008), Progress In Electromagnetics Research PIER, 86, 111-134. [25]. Chiariello. A. G, Maffucci. A, Miano. G, Villone. F and Zamboni. W, (2006), IEEE workshop on signal propagation on interconnects 185-188.

. Kumar Upendra and Ranjan Ravi (2019), Bulletin of Pure and Applied Sciences- Physics, 38D, 2, 60. [27]. Sattar Abdul Alam and Kumar Ashok, (2019), Bulletin of Pure and Applied Sciences- Physics, 38D, No-1, 46.

Published

2021-06-11

How to Cite

Surface Wave Propagation on Carbon Nanotube Bundle and Characteristics by High Attenuation . (2021). Bulletin of Pure and Applied Sciences – Physics, 40(1), 49–55. https://doi.org/10.48165/