Band Structure and Spatial Localization of Electrons in Twisted Bilayer Graphene Nanoribbons

Authors

  • Aradhna Mishra Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.
  • Jay Prakash Yadav Saharsha College of Engineering, Saharsa, Bihar 852201, India.
  • Ashok Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.

DOI:

https://doi.org/10.48165/

Keywords:

Band Structure, Saptial localization, twisted bilayer, nanoribbon, chiral graphene, energy dispersion, splitting edge band, Dirac Point

Abstract

 We have studied the band structure, density of states and spatial localization of  electron in twisted bilayer nanoribbons by means of tight binding calculation. In  Chiral geometries, edge states are also related to the presence of zig-zag edge atoms,  although they presented remarkable size effects. Physical properties of chiral  graphene nanoribbons and general edges can have a stong dependence on chirality.  We have analysed the properties of edge states in twisted bilayaer ribbons,  explaining their energy dispersion and spatial localization. The different splittings  were found in edge bands due to the inhomogeneous interplay coupling. For stacked  zig-zag atoms the coupling was larger than corresponding edge states splitted apart,  but edge states stemming from regions with stacking, where the interlayer coupling  was smaller and gave rise to zero energy bands. We have also been found that in the  edge regions where top and bottom zig-zag terminations were stacked, inter-ribbon  tunneling between the dispersions less zero energy states created bonding and  antibonding combination with energies away from the energy of the Dirac point. The  obtained results were found in good agreement with previously obtained results. 

References

Trambly. G. De Laissardiere, Mayon. D and Magand. L., (2010), Nano. Lett. 10, 804. [2] Morell. E. Suanrez., Borrea. J. D., Vargas. P, Pacheco. M, ABarticevic. Z, (2010), Phys. Rev. B, 82, 121407.

Trambly. G. De Laissar Diere et al., (2012), Phys. Rev. B, 86, 125413.

Li. G, Luican. A, Lopes. J. M. B. dossantos, Castro. Neto. A.H, Reina. A, Kong. J. and Ander E.Y., (2010), Nat. Phys. 6, 109.

Yan. W., Liu. M., Dou. R. F., Meng. L, Feng. L, Chu. Z. D., Zhang. Y, Liu. Z., Nie. J. C. and He. L., (2012), Phys. Rev. Lett. 109, 126801.

Sato. K, Saito. R, Cong. C, Yu. T., and Dresselhaus. M. S., (2012), Phys. Rev. B, 86, 125414.

Kim. K, Coh. S., Tan. L-Z, Regan. W, Yuk. J. M., Laie. S. G., Chatterjee. E, Crommee. M. F., Cohen. M. L. and Zettl. A, (2012), Phys. Rev. Lett. 108, 246103.

Varchon. F, Mallet. P, Magaud. L. and Venillen. J. Y., (2008), Phys. Rev. B, 77, 165415.

Kosynkin. D. V., Higginbotham, A. L. Sinitski. A, Lomeda. J. R., Dimiev. A., Price. B. K. and Tour. J. M., (2009), Nature (London), 458, 872.

Jiao. L., Zhang. L., Wang. X., Diaakiv. G. and Dai. H, (2009), Nature (London), 458, 877. [11]Xie. L, Wang. H, Jin. C, Wnag. X, Jiao. L,

Suenaga. K and Dai.H, (2011), J. Am Chem. Soc. 133, 10394.

Akhmerov. A. R. and Beenakker. C. W. J, (2008), Phys. Rev. B, 77, 085423.

Jaskolski. W, Aynela. A, Pele. M, Santos. H, and Chico. L, (2011), Phys. Rev. B, 83, 235424.

Nakada. K, Fujita. M, Dresselhaus. G and Dresselhaus. M. S, (1996), Phys. Rev. B, 54, 17954.

Brey. L and Fertig. H. A., (2006), Phys. Rev. B, 73, 235411.

Lopes. J. M. B., Dos Santos, Peres. N. M. R. and Castro. A.H. Neto, (2007), Phys. Rev. Lett. 99, 256802.

Shallcross. S, Sharma. S and Pankratov. O. A., (2008), Phys. Rev. Lett. 101, 056803. [18]Shallcross. S, Sharma. S, Kaneiaki. E and Pankrativ. O. A, (2010), Phys. Rev. B, 81, 165105.

Bistritzer. R and Mac Donald. A. H, (2011), Proc. Natl. Acad. Sci, U. S. A., 108, 12233. [20]Lopes. J. M. B. dos santos, Peres. N. M. R. and Castro. A. H. Neta, (2012), Phys. Rev. B, 86 155449.

San-Jose. P, Gonzaliz. J and Guinea. F, (2012), Phys. Rev. Lett. 108, 216802.

Morell. E. Sunarez, Pacheco. M, Chico. L and Breyy. L. B, (2013) Phys. Rev. B, 87, 125414.

Stauber. T, San-Jose. P and Brecy. L, (2013), New. J. Phys. 15, 113050.

Correa. J. D, Pacheco. M and Morell. E. Suarez, (2014), J. Mater. Sc. 49, 642.

Luican. A, Li. G, Eeina. A, Kong. J. Nair. R. R, Novoselov. K. S, Geim. A. K and Andrei. E. Y, (2011), Phys. Rev. Lett. 106, 126802.

Brihuega. I et al, (2012), Phys. Rev. Lett. 109, 196802.

Xian. L, Barraza. Lopez-S and Chou. M. Y, (2011), Phys. Rev. B, 84, 075425.

Morell. E. Suarez, Vargas. P et al, (2014), Phys. Rev. B, 84, 195421.

Singh Kumar Ashok, Ahmad Ali and Jagriti, (2017), B. P. A. S. Phys. No-1, 36D, 75. [30]Mishra. A and Kumar. A, (2021), B. P. A. S., 40D, Phy. No-1, 44.

Published

2022-12-15

How to Cite

Band Structure and Spatial Localization of Electrons in Twisted Bilayer Graphene Nanoribbons . (2022). Bulletin of Pure and Applied Sciences – Physics, 41(2), 81–85. https://doi.org/10.48165/