Radiation Leakage Images For Two Different Dielectric-Loaded Surface Plasmon Polariton Waveguides

Authors

  • Jay Shankar Kumar Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.
  • Ashok Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, Bihar 852128, India.

DOI:

https://doi.org/10.48165/

Keywords:

Radian leakage, dielectric, surface plasmon, polariton, wave guide, routing structure, degeneracy, Fourier space

Abstract

We have studied about leakage radiation images obtained for two different  dielectric-loaded surface plasmon polariton waveguides based on routing structures;  linear couplers and bent waveguides. By simultaneously imaging the conjugated  aperture and field planes of the microscope, we unambiguously quantify the  degeneracy lift occurring for strongly interacting dielectric loaded surface plasmon  polariton waveguides and visualize the symmetry of the coupled modes. We have  obtained the wave vector distribution and showed its evolution with the bend  radius. We have developed a numerical and an analytical analysis for momentum  distribution. We have found that for large radii i.e. for vanishing bending loss, we  can link the plasmon in Fourier space with the geometrical and modal properties of  the bend structure. It was also found that the radial dependence of the wave vector  distribution is governed by the phase difference. The obtained results were found in  good agreement with previously obtained results.

References

A. Honenau, J. R. Krenn, A. L. Stepanov.

A. Honenau, J. R. Krenn, A. L. Stepanov. et al, Opt. Lett. 30, 893, (2005).

al, Opt. Lett. 30, 893, (2005).

T. Holmgaad, S. I. Bozhevolnyi, L. Markey

T. Holmgaad, S. I. Bozhevolnyi, L. Markey and A. Dereux. Appl. Phys. Lett. 92, 011124,

Dereux. Appl. Phys. Lett. 92, 011124, (2008).

J. Grandidieretal, Phys. Rev. B. 78, 245419,

J. Grandidieretal, Phys. Rev. B. 78, 245419, (2008).

R. M. Briggs, et al., Nano Lett. 10, 4851,

, Nano Lett. 10, 4851,

(2010).

D. Kalavrouziotis et al., IEEE, Photonics

, IEEE, Photonics

Technol, Lett. 24, 1036, (2012).

Technol, Lett. 24, 1036, (2012).

S. Papaionannou et al., IEEEJ,

, IEEEJ, Light Wave

Technol. 29, 3185, (2011).

J. Grandidier, G. Colas des Francs, L.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C.

Markey, A. Bouhelier, S. Massenot, J. C. Weeber and A. Dereux, Appl. Phys. Lett. 96,

Weeber and A. Dereux, Appl. Phys. Lett. 96, 063105, (2010).

J. Gosciniak, S. I. Bozhenvolnyi

J. Gosciniak, S. I. Bozhenvolnyi et al., Opt. Express 18, 1207, (2010).

S. Randhawa et al., Opt. Express, 20, 2354,

, Opt. Express, 20, 2354,

(2012).

D. Perron, M. Wu, C. Horvath, D. Bachman

D. Perron, M. Wu, C. Horvath, D. Bachman and V. Van, Opt. Lett. 36, 2731, (2011).

and V. Van, Opt. Lett. 36, 2731, (2011). [11]A. V. Krasavin, S. Randhawa, J. S. Bouillard,

A. V. Krasavin, S. Randhawa, J. S. Bouillard, J. Renger, R. Quidant and A. V. Zayats, Opt.

J. Renger, R. Quidant and A. V. Zayats, Opt. Express. 19, 25222, (2011).

K. Hassan, J. C. Weeber, L. Markey and A.

n, J. C. Weeber, L. Markey and A.

Dereux, J. Appl. Phys. 110, 023106, (2011). Dereux, J. Appl. Phys. 110, 023106, (2011).

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye and D. W. Pohl, Phys. Rev. Lett. 77, 1889, (1996).

T. Holmgaard et al. Phys. Rev. B, 78, 165431, (2008).

B. Steinberger, A. Hohenau et al., Appl. Phys. Lett. 91, 081111, (2007).

A. Krishnan, C. J. Regan, L. G. De peralta and A. A. Bernussi, Appl. Phys. Lett. 97, 231110, (2010).

J. Berthelot, A. Bouhelier, G. Colasdes Francs, J. C. Weeber and A. Dereux, Opt. Express. 19, 5303, (2011).

C. J. Regan, O. Thiabgoh, L. G. De Peralta and A. Bernussi, Opt. Express, 20, 8658, (2010).

Published

2022-12-15

How to Cite

Radiation Leakage Images For Two Different Dielectric-Loaded Surface Plasmon Polariton Waveguides . (2022). Bulletin of Pure and Applied Sciences – Physics, 41(2), 75–80. https://doi.org/10.48165/