Electronic Structure of Phosphorous Doped Bulk Silicon and Its Use for Spin Qubits for Quantum Computation
DOI:
https://doi.org/10.48165/Keywords:
Electronic structure, Dopant, isolated scattering, effective mass, quadratic stark coefficient, interaction, doping potential, qubitsAbstract
We have studied the electronic structure of silicon dopants which is necessary for implementation of spin based qubits in silicon. Description of dopant in silicon is therefore useful both as a benchmark and for determining the details of the electronic structure of an isolated dopant which can subsequently be used to calculate more accurate spin dependent scattering cross sections. These calculation have been able to perform large scale calculations using the computational resources. We have performed two electron Hartree-Fock calculations within effective mass theory. These efforts include calculating the effects of applied electric and magnetic fields and the coupling of two donors via exchange interaction. Tight binding calculations have also been performed including a calculation of the quadratic stark coefficient of the hyper interaction. We have found an unprecedented level of structure in the doping potentials and densities and wave functions. Due to oscillatory nature of doping potentials, the exchange coupling between qubits obtained by extrapolating our results to smaller distances was found to be less than estimates based on the Heitler-London approximation. The obtained results were found in good agreement with previously obtained results.
References
W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915, (1955).
J. J. L. Morton, D. R. McCaney, M. A. Eriksson and S. A. Lyon, Nature (London) 479, 345, (2011).
G. Feher and E. A. Gere, Phys. Rev. B, 114, 1245, (1959).
W. M. Witzel and S. Das Sarma, Phys. Rev. B, 74, 035322, (2006).
E. Abe, A. M. Tyrshkin, S. Tojo, J. J. L. Morton, W. M. Witzel, A. Fujimoto etal, Phys. Rev. B, 82, 12101, (2010).
B. Koiller, R. B. Capaz, X. Hu and S. Das Sarma, Phys. Rev. B, 70, 115207, (2004). [7] D. J. Carter, N. A. Marks, O. Warschkow and D. R. Mc. Kenzie, Nanotechnol, 22, 065701, (2011).
L. M. Kettle, H. S. Goan, S. C. Smit, L. C. L. Hollenberg and C. J. Wellard, J. Phys. Condens Matter, 16, 1011, (2004).
C. J. Wellard, L. C. L. Hollenberg, F. Parisoli, L. Kettle, H. S. Goan, J. A. L. Mctosh and D. N. Jamieson, Phys. Rev. B, 68, 195209. (2003).
D. B. Mac Millen and U. Landman, Phys. Rev. B, 29, 4524, (1984).
L. M. Kettle, H. S. Goan, S. C. Smith, C. J. Wellard, L. C. L. Hollenberg and C. I. Pakes, Phys. Rev. B, 68, 075317, (2003).
C. J. Wellard, L. C. L. Hollengberg, L. M. Kettle and H. S. Goan, J. Phys.: Condens Matter 16, 5697, (2004).
M. J. Calderon, B. Koiller, X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 096802, (2006).
M. J. Calderon, B. Koiller and S. Das Sarma, Phys. Rev. B, 75, 125311, (2007). [15] Y. L. Hao, A. A. Djotyan, A. A. Avetisyan and F. M. Peeters, Phys. Rev. B, 80, 035329, (2009).
A. Fang, Y. C. Chang and J. R. Tuuker, Phys. Rev. B, 66, 155331, (2002).
G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg and S. Rogge, Nature, Phys, 656, (2008).
R. Rahman, S. H. Park, J. H. Cole, A. D. Greentree, R. P. Muller, G. Klimeck and L. C.L. Hollenberg, Phys. Rev. B, 80, 035302, (2009).
R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree and L. C. L. Hollengerg, Phys. Rev. B, 82, 155315, (2010).
R. Rahman, C. J. Wellard, F. R. Bradbury, M. Prada, J. H. Cole, G. Klimeck and L. C. L. Hollenberg, Phys. Rev. Lett. 99, 036403, (2007).
D. J. Carter, O. Warschkow, N. A. Marks and D. R. Mckenzie, Phys. Rev. B, 87, 045204, (2013).
D. W. Drumm, A. Budi, M. C. Per, S. P. Russo and L. C. L. Hollenberg, Nano. Res. Lett. 8, 111, (2013).