Study of Electron Impact Ionization Cross-Sections of Nitrogen Molecule by Inelastic Collision

Authors

  • Ritu Sharawat Department of Physics, Baba Mastnath University, Rohtak, Haryana 124001, India
  • Meenakshi Department of Physics, Baba Mastnath University, Rohtak, Haryana 124001, India
  • Rajeev Kumar Department of Physics, D. J. College, Baraut, Baghpat, Uttar Pradesh 250611, India
  • Ravinder Sharma Department of Biomedical Engineering, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat, Haryana-131039, India

DOI:

https://doi.org/10.48165/

Keywords:

Cross-section, Electron impact, Partial and total ionization

Abstract

In this article, the calculation of ionization cross-section of N2 molecule by electron  impact is reviewed. The work on ionization cross-sections from threshold to high (10  KeV) incident electron energies are calculated and their applications are discussed.  To find exact values of total ionization cross-sections for the N2 molecule, a semi 

empirical approach of Jain and Khare (1976) is adopted which is a modification to  eliminate the error factors, and then it is compared with the existing experimental  and/or theoretical data which gives satisfactory results 

References

Rapp D, Briglia DD. (1965). Total cross sections for ionization and attachment in gases by electron impact. II. Negativeion formation. The Journal of Chemical Physics. 43(5),1480-9.

https://doi.org/10.1063/1.1696958

Khare SP, Padalia BD. (1970). Total ionization cross sections of He, N2, H2, and O2 due to electron impact. Journal of Physics B: Atomic and Molecular Physics (1968-

. 3(8), 1073.

Opal CB, Beaty EC, Peterson WK. (1972). Tables of secondary-electron-production cross sections. Atomic Data and Nuclear Data Tables. 4, 209-53.

Jain A, Baluja KL. (1992). Total (elastic plus inelastic) cross sections for electron scattering from diatomic and polyatomic molecules at 10–5000 eV: H2, Li2, HF, CH4, N2, CO, C2 H2, HCN, O2, HCl, H2S, PH3, SiH4, and CO2. Physical review A. 45(1), 202.

Saksena V, Kushwaha MS, Khare SP. (1997). Ionization cross-sections of molecules due to electron impact. Physica B: Condensed Matter. 233(2-3), 201-12.

Straub HC. Absolute partial cross sections for electron-impact ionization of argon, hydrogen, nitrogen, oxygen, and carbon dioxide from threshold to 1000 eV (Doctoral dissertation, Rice University).

Brook E, Harrison MF, Smith AC. (1978). Measurements of the electron impact ionisation cross sections of He, C, O and N atoms. Journal of Physics B: Atomic and Molecular Physics (1968-1987). 11(17), 3115.

Mark TD. (1992). Ionization by electron impact. Plasma Physics and Controlled Fusion. 34(13), 2083.

Margreiter D, Deutsch H, Schmidt M, Märk TD. (1990). Electron impact ionization cross sections of molecules: Part II. Theoretical determination of total (counting) ionization cross sections of molecules: a new approach. International journal of mass spectrometry and ion processes. 100, 157-76.

Https://doi.org/10.1016/0168-

(90)85074-c

Deutsch H, Becker K, Matt S, Märk TD. (2000). Theoretical determination of absolute electron-impact ionization cross sections of

molecules. International Journal of Mass Spectrometry. 197(1-3), 37- 69.https://doi.org/10.1016/S1387-

(99)00257-2

Joshipura KN, Patel PM. (1994). Electron impact total (elastic+ inelastic) cross-sections of C, N & O atoms and their simple molecules. Zeitschrift für Physik D Atoms, Molecules and Clusters. 29(4), 269-73.

García G, Roteta M, Manero F. (1997). Electron scattering by N2 and CO at intermediate energies: 1–10 keV. Chemical physics letters. 264(6), 589-95.

Kothari HN, Joshipura KN. (2011). Total and ionization cross-sections of N2 and CO by positron impact: Theoretical investigations. Pramana. 76(3), 477-88.

https://doi.org/10.1007/s12043-011-0049-8 [14]Singh S, Dutta S, Naghma R, Antony B. (2016). Theoretical formalism to estimate the positron scattering cross section. The Journal of Physical Chemistry A. 120(28), 5685-92. https://doi.org/10.1021/acs.jpca.6b04150 [15]Shen Z, Wang E, Gong M, Shan X, Chen X. (2018). Electron-impact ionization cross sections for nitrogen molecule from 250 to 8000 eV. Journal of Electron Spectroscopy and Related Phenomena. 225, 42-8.

Huber SE, Mauracher A, Süß D, Sukuba I, Urban J, Borodin D, Probst M. (2019). Total and partial electron impact ionization cross sections of fusion-relevant diatomic molecules. The Journal of Chemical Physics. 150(2), 024306. https://doi.org/10.1063/1.5063767

Jain, D. K., & Khare, S. P. (1976). Ionizing collisions of electrons with CO2, CO, H2O, CH4 and NH3. Journal of Physics B: Atomic and Molecular Physics, 9(8), 1429.

Khare SP, Meath WJ. (1987). Cross sections for the direct and dissociative ionisation of NH3, H2O and H2S by electron impact. Journal of Physics B: Atomic and Molecular Physics (1968-1987). 20(9), 2101.

Pal S, Prakash S, Kumar S. (1999). Differential cross sections for the ionization of the CO molecule by electron impact. International journal of mass spectrometry. 184(2-3), 201-5. https://doi.org/10.1016/S1387-

(99)00003-2

Pal S. (1999). Partial double-and single differential cross-sections for CO2 by electron collision. Chemical physics letters. 308(5-6), 428-36. https://doi.org/10.1016/S0009-

(99)00590-4

Pal, S., Singh, R., Kumar, M., & Kumar, N. (2020). Ionization cross-sections for C2H2 and C2H5OH by electron-impact. Radiation Physics and Chemistry, 173, 108877.

Sharma, R., & Sharma, S. P. (2019). Direct and dissociative ionization cross-section of oxygen molecule from threshold to 10 KeV. International Journal of Engineering and Advanced Technology, 8(6 Special Issue 3), 1365–1368.

https://doi.org/10.35940/ijeat.F1241.0986S3 19

Sharma R, Kumar R, Sharma SP. (2020). Absolute ionization cross sections of hydrogen bromide by electron impact. In AIP Conference Proceedings. 2220(1), 130024. AIP Publishing LLC. https://doi.org/10.1063/5.0001800

Sharma R, Sharma SP. (2019). Absolute Ionization Cross Sections of Hydrogen Chloride Gaseous Molecule by Electron Impact. In International Conference on Sustainable and Innovative Solutions for Current Challenges in Engineering & Technology. pp. 77-87. Springer, Cham.

https://doi.org/10.1007/978-3-030-44758- 8_8

Kumar R, Sharma SP, Sharma R. (2020). Electron impact ionization cross sections of hydrogen fluoride molecule. European Journal of Mass Spectrometry. 26(3), 195- 203.

https://doi.org/10.1177/1469066719893230 [26]Pal S, Kumar J, Bhatt P. (2003). Electron impact ionization cross-sections for the N2

and O2 molecules. Journal of electron spectroscopy and related phenomena. 129(1), 35-41.

Pal S. (2008). Differential and partial ionization cross sections for electron impact ionization of plasma processing molecules: CF4 and PF5. Physica Scripta. 77(5), 055304. https://doi.org/10.1088/0031-

/77/05/055304

Pal, S., Kumar, N., & Anshu. (2009). Electron-collision-induced dissociative ionization cross-sections for silane. Advances in Physical Chemistry, 2009. https://doi.org/10.1155/2009/309292

Kumar R, Pal S. (2013). Evaluation of electron ionization cross sections of methyl halides. Rapid Communications in Mass Spectrometry. 27(1), 223-37.

https://doi.org/10.1002/ rcm.6433.

Kumar R, Pal S. (2011). Electron ionization cross-sections and rate coefficients for the N2O molecule. Indian Journal of Physics. 85(12), 1767-74.

https://doi.org/10.1007/s12648-011-0197-1 [31]Kumar R. (2015). Electron ionization cross sections of PF3 molecule. Journal of Applied Mathematics and Physics. 3(12), 1671-8. https://doi.org/10.4236/jamp.2015.312192 [32]Pal S, Kumar M, Singh R, Kumar N. (2019). Evaluation of electron-impact ionization cross sections for molecules. The Journal of Physical Chemistry A. 123(19), 4314-21. [33]Chan WF, Cooper G, Sodhi RN, Brion CE. (1993). Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11–200 eV). Chemical physics. 170(1), 81-97.

https://physics.nist.gov/cgi

bin/Ionization/table.pl?ionization=N2

Published

2022-12-15

How to Cite

Study of Electron Impact Ionization Cross-Sections of Nitrogen Molecule by Inelastic Collision . (2022). Bulletin of Pure and Applied Sciences – Physics, 41(2), 51–58. https://doi.org/10.48165/