Transport Properties of Square Lattice of Metallic Nanogranules Embeded in Insulator
DOI:
https://doi.org/10.48165/Keywords:
Transport, Lattice, Nanogranules, Embedded Insulator, Disorder, Kinetic Equations, Tunnel Conduction Charge AccumulationAbstract
We have made theoretical studies of transport properties of square lattice of metallic nanogranules embedded insulting layers. We have developed an extension of the classical Sheng-Abeles model for a single layer of identical spherical particles located in sites of a simple square lattice with three possible charging states of granule and three kinetics processes, creation of a pair on neighbor granules, recombination of such a pair and charge translation from a charged to neighbor neutral granule. This model neglecting the effect of disorder within a layer and of multilayered structures, revealed a variety of possible kinetic and thermodynamical regimes. Effective kinetic equations for averaged charge densities were derived for the characteristics area of the granular sample, the contact areas beneath metallic currents leads and free area between these leads. From these kinetic equations, it was shown that the tunnel conduction in the free area did not produce any notable charge accumulation and the conduction regime was purely ohmic. Some conduction in the contact area became impossible without charge accumulation, leading to a generally non-ohmic conduction regime, since the contact area dominated in the overall resistance. The calculated I-V curves and temperature dependences were found in a good agreement with available experimental data and obtained theoretical results.
References
Beloborodov. I. S, Lopatin. A. V, vinokur. V. M, and Efetov. K. B, (2007), Rev. Mod. Phys 79, 469.
Kozub. V. L., Kozhevin. V. M, Yasin. D. A, and Gurevich. S. A, (2005), JETP. Lett. 81, 226.
Ng. Tai-Kai, and Chenug. Ho-Yin, (2004), Phys. Rev. B, 70, 172104.
Kakazei. G. N, Feitas. P. P, Cardoso. S, Lopes. A. M. L, Pogorelov. Yu. G, Santosh.
J. A. M. and Sousa. J. B, (1999), IEEE. Trans. Mag. 35, 2895.
Dieny. B, Sankar. S, McCartney. M. R, Smit. D. J., Bayle-Guillemand. P and Berkowitez. A. E, (1998), J. Magn. Magn. Mater, 185, 283.
Kazazei. G. N, Lopes. AM, Sousa. J. B., Pogorelov. Yu. G, Santosh. J. A. M, Feitas. P.P, Cardoso. S and Snoeck. E, (2000), J. Appl. Phys. 87, 6328.
Schaadt. D. M., Yu. E. T, Sankar. S and Berkowitz. A. E. (1999), Appl. Phys. Lett. 74, 472.
Berkowitz. A. E, Mitchell. J. R, Carey. M. J., Young. A. P, Zhang. S, Spada. P. E., Parker. F. T., Hutten. A and Thomas. G, (1992), Phys. Rev. Lett. 68, 3745.
Schelp. L. F, Fert. A, Fetter. F, Holody. P, Lee. S. F., Mourice. J. L. Petroff. F and Vaures. A, (1997), Phys. Rev. B, 56, R5747.
Varalda. J, Ortiz. A, Oliveira. A. J, Vodungbo. B, Zheng. Y. L., Demaille. D, Marangolo. M and Mosca. D. H, (2007), J. Appl. Phys. 101, 014318.
Parker. M. A, Coffey. K. R, Howard. J. K, Tsang. C. H., Fontana. R. E and Hylton. C. H, (1996), IEEE. Trans. Magn. 32, 142.
Sulva. H. G, Gomes. H. L., Pogorelov. Y. G, Perira. L. M. C, Kakazei. G. N, Sousa. J. B, Aranjo. J. P., Mariano. J. F. L, Cardoso. S and Freitas. P. P, (2009), Appl. Phys. 106, 113910.
Kulik. I. O and Shekhar. R. I, (1975), Zh. Eksp. Fiz. 68, 623.