Performance of Silica Single Mode Hollow-core Optical Fibers in Optical Communications
DOI:
https://doi.org/10.48165/Keywords:
Single mode, Hollow-Core Fiber, Optical Communication, Microstructured, Cladding, Photonic Band Gap, Antiresonant, Attenuation, Mode Field, Fiber Array, Optical CoatingAbstract
We have studied the performance of silica single mode hollow-core optical fibers in optical communication. Silica single mode optical fibers form the core of high capacity telecommunication network. Hollow-core optical fibers have an air filled core surrounded with micro structured glass cladding allowing high level of light confinement. Light guiding mechanism of Bragg, photonic band gap and antiresonant fibers were considered. Nested antiresonant nodeless fibers and conjoined fibers are the two most promising antiresonant fiber designs for achieving ultra-low attenuation. Mode field adaptation using graded index multimode fiber; we have achieved record low insertions loss and also suppressed higher order modes. Deposition of anti-reflective coating allowed reducing unwanted back reflections. We have developed an approach for a hollow-core optical fiber of single mode interconnection based on a modified fiber array technology which solved the problem of back reflections by applying optical coating. Fundamental mode coupling was achieved by using mode theory adapters in the form of graded index multimode fibers.
References
GAO. S, Wang. Y, Jian. C et al, (2014), IEEE Photonics Technology Letters, 26, 21, 2134.
Couny. F, Benabid. F, Light. P. S., (2007), IEEE Photonic Technology Letters, 19, 13, 1020.
Miller. G. A, Cranch. G. A, (2016), 28, 4, 414.
Jasion. G. T, Bradley. T. D, Harrington. K et al, (2020), In Fiber communication conference and exhibition post deadline papers. San Diego (U.S.A) p.1-3, DOI 10.1364/OFC 2020 Th 4B4.
Chen. Y, Liu. Z, Sandoghchi. S. R. etal, (2016), Journal of Light wave Technology, 34, 1, 104-113, DOI: 10.1109/JLT.2015.2476461.
Jaison. G. T., Poletti. F, Shrimpton et al, (2015), In Optical fiber communication conference and exhibition, Los Angeles (USA), p. 1-3, DOI:10.1364/ OFC 2015.
Komanec. M, Suslov. D, Zvanovec. S, etal, (2019), IEEE Photonic Technology Letters, 31, 10, 723-726, DOI: 10.1109/LPT 2019.
Thomson. J. J., (1893), Maxwell’s Treatise on Electricity and Magnetism, ISBN: 978.1332470754.
Lord Rayleigh F.R.S. XVIII, (1897), The London Edinburg and Pulin Philosophical Magzine and Journal of Science Vol -43, no. -261, p- 125-132, DOI: 10.1080/1478644970862069.
Marcatili. E.A, J. Sch. Meltzer, R. A. (1964), The bell system Technical Journal, 43, 4, 1783-1809, DOI: 10.1002/ j. 1538-7305, 1964.tb04108.X.
Hidaka. T, Morikawa. T, Shimada. J, (1981), Journal of Applied Physics, 52, 7, 4467-4471, DOI: 10.1063/1.3293739.
Nagano. N, Saibo. M, Muyagi. M et al, (1991), Applied Optics, 30, 9, 1074-1079, DOI: 10.1364/A0.30.001074.
Saito. Y, Kanaya. T, Nomura. A.A. et al, (1993), Optics Letters, 18, 24, 2150-2152, DOI: 10.1364/06.18.002150.
Sirkis. J. S, Brennan. D. D, Putman. M. A. et al, (1993), Optics Letters, 18, 22, 1973- 1975, DOI: 10.1364/0L.18.001973.
Renn. M. J, Montgomery. D, Vdovin. O et al, (1995), Physical Review Letters, 75, 18, 3253-3256, DOI: 10.1103/ Phys. Rev. Lett. 75. 3253.
Pennetta. R, XIE. S, Lenanhan. F, et al, (2017), Physical Review Applied, 8, 1, p-1- 6, DOI: 10.1103/ Phys. Rev. Applied. 8.014014.
Dadashzadih. N, Thirugnana Sambadam, M. P., Weerasinghe. H. W. K. etal, (2017), Optics Express, 25, 12, 13351-13358, DOI: 10.1364/OE.25.013351.
Klimczak. M, Dobrakowski D., Ghosh. A. N. et al, (2019), Optics Letters, 44, 17, 4395- 4398, DOI: 10.1364/QL.44.004395.
Wheeler. N, Bradley. T, Hayes. J. et al, (2016), In Speciality Optical Fibers Meeting at the Advanced Photonics Congress. Vancouver (Canada), p-1, DOI: 10.1364/Sof.2016.Som 3f2.
GAO. S. F., Wang. Y. Y, Ding. W et al, (2018), Nature Communications, 9, no-1, p – 1-6, DOI: 10.1109/IPC con.2016.781157.