The Mode Expansion of the String Fields
DOI:
https://doi.org/10.48165/bpas.2023.42D.1.4%20Keywords:
Higher Genus, Uniformizing Group, Conformally Flat Spaces, Invariances, Critical DimensionAbstract
The expansion of the string coordinates is different curved surfaces and space times. A summation of uniformizing group elements is necessary at genus g ≥ 1. The invariances are listed for the sigma model action in a maximally curved space-time. Thecritical dimension is established through conditions on the quantum commutators.
References
M. B. Green, J. H. Schwarz and E. Witten (1987). Superstring Theory, Vol. 1, CambridgeUniversity Press, Cambridge.
S. Mandelstam (1986). The Interacting String Picture and Functional Integration, Proceedings of the Workshop on Unified String Theories, Institute for Theoretical Physics, Santa Barbara, 1985, eds. M. Green and D. Gross, World Scientific Publishing, Singapore, pp. 46-102.
S. Davis (1989). On the Domain of String Perturbation Theory, Class. Quantum Grav. 6, 1791-1803. 4. S. Davis, Superstrings in an Exponentially Expanding Cosmological Background, RFSC-20-22. 5. J. J. Fernández-Melgarejo, J. Sakamoto, Y. Sakatani and K. Yoshida (2019). Weyl Invariance of String
Theories in Generalized Supergravity Backgrounds, Phys. Rev. Lett. 122, 111602:1-6. 6. E. Witten (1984) Nonabelian Bosonization in Two Dimensions, Commun. Math. Phys. 82, 455-472. 7. J. S. W. Son, Superstring Theory in AdS3 and Plane Waves, Harvard University Ph.D. Thesis, 2004. 8. A. L. Larsen and N. Sánchez (1998). From the WZWN Model to the Liouville Equation: Exact String
Dynamics in Conformally Invariant AdS Background, Phys. Rev. D58, 126002:1-8. 9. A. L. Larsen and N. Sánchez (1996). Sinh-Gordon, Cosh-Gordon and Liouville Equations for Strngs and Multi-Strings in Constant Curvature Spacetimes, Phys. Rev. D54, 2801-2807. 10. M. D. Krushkal and D. Wiley 1972). AMS Summer Seminar on Nonlinear Wave Motion, ed.A. C. Newell, Potsdam, New York..
L. D. Faddeev and L. A. Takhtajan, Essentially Nonlinear One-Dimensional Model of Classical Field Theory, Theor. Math. Phys. 21(2), 1046-1057.
R. Shankar and E. Witten (1978). S Matrix of the Supersymmetric Nonlinear σ Model, Phys.R ev. D17, 2134-2143.
C. M. Khalique and G. Magalakw (2014). Combined Sinh-Cosh Gordon Equation: Symmetry Reuction, Exact solutions and Conservation Laws, Quaestiones Mathematicae 37, 199-214. 14. T. Yanagisawa (2019). Renormalization Group Analysis of the Hyperbolic Sine-Gordon Model:Asymptotic Freedom from Cosh Interaction, Prog. Theor. Exp. Phys. 1902, 023A01:1-11. 15. K. Gawedzki and A. Kupianen (1988). G/H Conformal Field Theory from Gauged WZW Model, Phys. Lett. 215B, 119-123.