Thermal Transport in Nano Structured Carbon Nanotubes and Its Thermal Conductance
DOI:
https://doi.org/10.48165/bpas.2023.42D.2.6Keywords:
Thermal Transport, Nano Structure, Carbon Nanotube, Thermal Conductance, Non Equilibrium, Green Function, Interfacial, Unzipped, ImperfectionAbstract
We have studied thermal transport in nano-structured carbon nanotubes and have calculated its thermal conductance using the nonequilibrium Green’s function method. The thermal conductance of carbon nanotubes linearly depended on the width of the unzipped part of the carbon nanotube but exponentially decayed and then converged to a finite value of the unzipped length increased. But characteristics are unusual to common bulk materials but are universal to nano materials of nanotube and graphene like structures. An exponentially decayed thermal conductance with the length was found at interfaces. Electronic conductance was found to show an exponential thermal transport in carbon nanotubes showed features distinctly different from those in common bulk materials. Carbon nanotubes have been found strong structural imperfections; their thermal conductance exhibited unexpectedly perfect linear scaling behavior as the width of the unzipped part changed. As the unzipped length increased, thermal conductance exponentially decreased by the one dimensional atomic chain model. The obtained results were found in good agreement with previous results.
References
Schwab. K, Henriksen. E, Worlock. J and Roukes. M, (2000), Nature (London), 404, 974.
Chang. C. W, Okawa. D, Garcia. H, Majumdar. A and Zetll. A, (2008), Phys. Rev. Lett. 101, 075903.
Padture. N. P, Gell. M and Jorden. E. H. (2002), Science, 296, 280.
Snyder. G and Toberer. E, (2008), Nat. Mater. 7, 105.
Saito. R, Dresselhaus. G and Dresselhaus. M, (1998), Physical Properties of Carbon nanotubes (Imperial College, London).
Castro. Net. A. H, Guinea. F, Peres. N. M. R, Novoselov. K. S and Geim. A. K, (2009), Rev. Mod. Phys. 81, (109).
Balandin. A. A, (2011), Nat. Mater. 10, 569.
Ni. X, Zhang. G and Li. B, (2011), Condens. Matter 23, 215301.
Santos. H, Chico. L and Brey. L, (2009), Phys. Rev. Lett., 103, 086801.
Huang. B, Son. Y, Kim. G, Duan. W and Ihm. J, (2009), J. Am. Chem. Soc. 131, 17919.
Wang. B and Wang. J, (2010), Phys. Rev. B, 81, 045425.
Huang. B, Li. Z, Son. Y, Kim. G, Duan. W and Ihm. J, (2010), J. Chem. Phys. 133, 084702.
Kosyn Kin. D, Higginbothan. A, Sinitski. A, Lomeda. J, Dimiev. A, Price. B and Tour. J, (2009), Nature (London), 458, 872.
Jiao. L, Zhang. L, Wang. X, Dian Kov. G and Dai. H, (2009), Nature (London), 458, 877.
Cano-Marquez. A, et al, (2009), Nano. Lett. 9, 1527.
Yamamoto. T and Watanabe. K, (2006), Phys. Rev. Lett. 96, 255503.
Wang. J. S, Wang. J and Zeng. N, (2006), Phys. Rev. B, 74, 033408.
Wang. J. S, Zeng. N, Wang. J and Gan. C. K, [19] Xu. Y, Wang. J. S, Duan. W, Gu. B. L. and Li. B, (2008), Phys. Rev. B, 78, 224303.
Mingo. N, (2006), Phys. Rev. B, 74, 125402.
Datta. S, (1997), Electronic Transport in Messoscopic Systems (Cambridge University Press, Cambridge, U. K.).
Cahill. D. G, Ford. W. K, Goodson. K. E, Mahan. G. D, Majumdar. A, Maris. H. J, Merlin. R and Phillpot. S. R, (2003), J. Appl. Phys. 93, 793.
Donadio. D and Galli. G, (2010), Nano. Lett. 10, 847.
Kitel. C, (2005), Introduction to Solid State Theory, 8th ed., (Wiley, Hoboken. N.J.)