Thermal Transport in Nano Structured Carbon Nanotubes and Its Thermal Conductance

Authors

  • Ravi Kumar Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, 852128, Bihar, India.
  • Arun Kumar Khan Department of Physics, R. M. College, Saharsa, Bihar 852201, India.

DOI:

https://doi.org/10.48165/bpas.2023.42D.2.6

Keywords:

Thermal Transport, Nano Structure, Carbon Nanotube, Thermal Conductance, Non Equilibrium, Green Function, Interfacial, Unzipped, Imperfection

Abstract

We have studied thermal transport in nano-structured carbon nanotubes and have  calculated its thermal conductance using the nonequilibrium Green’s function method.  The thermal conductance of carbon nanotubes linearly depended on the width of the  unzipped part of the carbon nanotube but exponentially decayed and then converged  to a finite value of the unzipped length increased. But characteristics are unusual to  common bulk materials but are universal to nano materials of nanotube and graphene  like structures. An exponentially decayed thermal conductance with the length was  found at interfaces. Electronic conductance was found to show an exponential thermal  transport in carbon nanotubes showed features distinctly different from those in  common bulk materials. Carbon nanotubes have been found strong structural  imperfections; their thermal conductance exhibited unexpectedly perfect linear scaling  behavior as the width of the unzipped part changed. As the unzipped length increased,  thermal conductance exponentially decreased by the one dimensional atomic chain  model. The obtained results were found in good agreement with previous results.

References

Schwab. K, Henriksen. E, Worlock. J and Roukes. M, (2000), Nature (London), 404, 974.

Chang. C. W, Okawa. D, Garcia. H, Majumdar. A and Zetll. A, (2008), Phys. Rev. Lett. 101, 075903.

Padture. N. P, Gell. M and Jorden. E. H. (2002), Science, 296, 280.

Snyder. G and Toberer. E, (2008), Nat. Mater. 7, 105.

Saito. R, Dresselhaus. G and Dresselhaus. M, (1998), Physical Properties of Carbon nanotubes (Imperial College, London).

Castro. Net. A. H, Guinea. F, Peres. N. M. R, Novoselov. K. S and Geim. A. K, (2009), Rev. Mod. Phys. 81, (109).

Balandin. A. A, (2011), Nat. Mater. 10, 569.

Ni. X, Zhang. G and Li. B, (2011), Condens. Matter 23, 215301.

Santos. H, Chico. L and Brey. L, (2009), Phys. Rev. Lett., 103, 086801.

Huang. B, Son. Y, Kim. G, Duan. W and Ihm. J, (2009), J. Am. Chem. Soc. 131, 17919.

Wang. B and Wang. J, (2010), Phys. Rev. B, 81, 045425.

Huang. B, Li. Z, Son. Y, Kim. G, Duan. W and Ihm. J, (2010), J. Chem. Phys. 133, 084702.

Kosyn Kin. D, Higginbothan. A, Sinitski. A, Lomeda. J, Dimiev. A, Price. B and Tour. J, (2009), Nature (London), 458, 872.

Jiao. L, Zhang. L, Wang. X, Dian Kov. G and Dai. H, (2009), Nature (London), 458, 877.

Cano-Marquez. A, et al, (2009), Nano. Lett. 9, 1527.

Yamamoto. T and Watanabe. K, (2006), Phys. Rev. Lett. 96, 255503.

Wang. J. S, Wang. J and Zeng. N, (2006), Phys. Rev. B, 74, 033408.

Wang. J. S, Zeng. N, Wang. J and Gan. C. K, [19] Xu. Y, Wang. J. S, Duan. W, Gu. B. L. and Li. B, (2008), Phys. Rev. B, 78, 224303.

Mingo. N, (2006), Phys. Rev. B, 74, 125402.

Datta. S, (1997), Electronic Transport in Messoscopic Systems (Cambridge University Press, Cambridge, U. K.).

Cahill. D. G, Ford. W. K, Goodson. K. E, Mahan. G. D, Majumdar. A, Maris. H. J, Merlin. R and Phillpot. S. R, (2003), J. Appl. Phys. 93, 793.

Donadio. D and Galli. G, (2010), Nano. Lett. 10, 847.

Kitel. C, (2005), Introduction to Solid State Theory, 8th ed., (Wiley, Hoboken. N.J.)

Published

2023-12-22

How to Cite

Thermal Transport in Nano Structured Carbon Nanotubes and Its Thermal Conductance . (2023). Bulletin of Pure and Applied Sciences – Physics, 42(2), 93–97. https://doi.org/10.48165/bpas.2023.42D.2.6