Non Linear Interactions between Two Mechanical Resonances of Suspended Carbon Nanotube Resonator
DOI:
https://doi.org/10.48165/bpas.2023.42D.2.3Keywords:
Nonlinear Interaction, Eigen Mode, Suspended Carbon Nanotube, Resonator, Mode Coupling, Tunneling, Quantum Dot, Coulomb Blockade, Induced TensionAbstract
We have studied the nonlinear interaction between two different eigen modes in suspended carbon nanotube resonators. It was found that the mode coupling in suspended carbon nanotubes was dominated by single electron-tunneling process. For suspended carbon nanotube resonator at low temperatures using quantum dot embedded in the nanotube as detector, the interaction was found between two different eigen modes. For nanotube resonators in the coulomb blockade regime the nonlinear modal interaction was dominated by single electron tunneling as opposed to displacement induced tension. A strongly enhanced mode coupling was observed in the coulomb blockade regime which was of the order of magnitude larger than in conventional micro resonators. The obtained results found in good agreement with previously obtained results.
References
Postma. H. W. C, Kozinsky. I, Husain A and Roukes. M. I, (2005), Appl. Phys. Lett. 86, 223105.
Lassagne. B, Tarakanov. Y, Kinaret. J, Garcia Sanchez. D and Bachtoid. A, (2009), Science, 325, 1107.
Steele G. A, Huttel. A. K, Witkamp. B, Poot. B, Meerwald. H. B, Kouwenhoven. L. P. and Vanderzant. H. S. J,(2009), Science, 325, 1103.
Venstra. W. J, Westra. H. J. R and Vanderzant. H. S. J. (2011), Appl. Phys. Lett., 99, 151904.
Faust. T, Rieger. J, Seitner. M. J, Kernn. P, Kotthaus. J. P and Weig, arXiv: 1201.4083.
and Owers-Bradley. J. R, arXiv: 1204.4487.
Mahboob. I, Nishiguchi. K etal, (2012), Nat. Phys. 8, 387.
Westra. H. J. R etal, (2011), Phys. Rev. B, 84, 134305.
Westra. H. J. R. etal, (2010), Phys. Rev. Lett., 105, 117205.
Santamore. D. H etal, (2004), Phys. Rev. B, 70, 144301.
Kumar. S and Divincenzo D. P., (2010), Phys. Rev. B, 82, 014512.
Burnard. A. W etal, arXiv: 1110.1517. [13] Huttel. A. K. etal, (2009), Nano Lett. 9, 2547.
Laird. E. A. etal, (2012), Nano Lett. 12, 193.
Chaste. J etal, (2011), Appl. Phys. Lett., 99, 213502.
Chaste. J. etal, (2012), Nat. Nanotechnol, 7, 301.
Chiu. H. Y etal, (2008), Nanolett., 8, 4342.
Jensen. K, Kim. K and Zettl.A, (2008), Nat. Nanotechnol. 3, 533.
Sazonova. V, Yaish. Y, Ustiiner. H, Roundy. D, Arias. T. A and Mc Euen. P. L, (2004), Nature (London), 431, 284.
Garcia-Sanchez. D, Sanpaulo. A, Esplandiu. M. J, Prez-Murano. F, Forro. L, Aguasca. A and Bachtold. A, (2007), Phys. Rev. Lett. 99, 085501.
Naik. A, Bun. O, LaHaye. M. D, Armour. A. D, Clerk. A.A, Bleneowe. M. P and Schwab. K. C, (2006), Nature (London), 443, 193.
Armour. A. D, Blencowe. M. P and Zhang. Y, (2004), Phys. Rev. B, 69, 125313.
Poot. M and Vanderzant. H. S. J, (2012), Phys. Rep. 511, 273.