Non Linear Interactions between Two Mechanical Resonances of Suspended Carbon Nanotube Resonator

Authors

  • Shikha Kumari Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, 852128, Bihar, India.
  • Nabin Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, 852128, Bihar, India.

DOI:

https://doi.org/10.48165/bpas.2023.42D.2.3

Keywords:

Nonlinear Interaction, Eigen Mode, Suspended Carbon Nanotube, Resonator, Mode Coupling, Tunneling, Quantum Dot, Coulomb Blockade, Induced Tension

Abstract

We have studied the nonlinear interaction between two different eigen modes in  suspended carbon nanotube resonators. It was found that the mode coupling in  suspended carbon nanotubes was dominated by single electron-tunneling process. For  suspended carbon nanotube resonator at low temperatures using quantum dot  embedded in the nanotube as detector, the interaction was found between two different  eigen modes. For nanotube resonators in the coulomb blockade regime the nonlinear  modal interaction was dominated by single electron tunneling as opposed to  displacement induced tension. A strongly enhanced mode coupling was observed in  the coulomb blockade regime which was of the order of magnitude larger than in  conventional micro resonators. The obtained results found in good agreement with  previously obtained results. 

References

Postma. H. W. C, Kozinsky. I, Husain A and Roukes. M. I, (2005), Appl. Phys. Lett. 86, 223105.

Lassagne. B, Tarakanov. Y, Kinaret. J, Garcia Sanchez. D and Bachtoid. A, (2009), Science, 325, 1107.

Steele G. A, Huttel. A. K, Witkamp. B, Poot. B, Meerwald. H. B, Kouwenhoven. L. P. and Vanderzant. H. S. J,(2009), Science, 325, 1103.

Venstra. W. J, Westra. H. J. R and Vanderzant. H. S. J. (2011), Appl. Phys. Lett., 99, 151904.

Faust. T, Rieger. J, Seitner. M. J, Kernn. P, Kotthaus. J. P and Weig, arXiv: 1201.4083.

and Owers-Bradley. J. R, arXiv: 1204.4487.

Mahboob. I, Nishiguchi. K etal, (2012), Nat. Phys. 8, 387.

Westra. H. J. R etal, (2011), Phys. Rev. B, 84, 134305.

Westra. H. J. R. etal, (2010), Phys. Rev. Lett., 105, 117205.

Santamore. D. H etal, (2004), Phys. Rev. B, 70, 144301.

Kumar. S and Divincenzo D. P., (2010), Phys. Rev. B, 82, 014512.

Burnard. A. W etal, arXiv: 1110.1517. [13] Huttel. A. K. etal, (2009), Nano Lett. 9, 2547.

Laird. E. A. etal, (2012), Nano Lett. 12, 193.

Chaste. J etal, (2011), Appl. Phys. Lett., 99, 213502.

Chaste. J. etal, (2012), Nat. Nanotechnol, 7, 301.

Chiu. H. Y etal, (2008), Nanolett., 8, 4342.

Jensen. K, Kim. K and Zettl.A, (2008), Nat. Nanotechnol. 3, 533.

Sazonova. V, Yaish. Y, Ustiiner. H, Roundy. D, Arias. T. A and Mc Euen. P. L, (2004), Nature (London), 431, 284.

Garcia-Sanchez. D, Sanpaulo. A, Esplandiu. M. J, Prez-Murano. F, Forro. L, Aguasca. A and Bachtold. A, (2007), Phys. Rev. Lett. 99, 085501.

Naik. A, Bun. O, LaHaye. M. D, Armour. A. D, Clerk. A.A, Bleneowe. M. P and Schwab. K. C, (2006), Nature (London), 443, 193.

Armour. A. D, Blencowe. M. P and Zhang. Y, (2004), Phys. Rev. B, 69, 125313.

Poot. M and Vanderzant. H. S. J, (2012), Phys. Rep. 511, 273.

Published

2023-12-22

How to Cite

Non Linear Interactions between Two Mechanical Resonances of Suspended Carbon Nanotube Resonator . (2023). Bulletin of Pure and Applied Sciences – Physics, 42(2), 80–83. https://doi.org/10.48165/bpas.2023.42D.2.3