Band Gap Mechanism for Armchair Single Walled Carbon Nanotubes and Metal Semiconductor Transition for Symmetry Breaking

Authors

  • Nitish Nirala Research Scholar, University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, 852128, Bihar, India.
  • Nabin Kumar University Department of Physics, B.N. Mandal University, Madhepura, North Campus, Singheshwar, 852128, Bihar, India.

DOI:

https://doi.org/10.48165/bpas.2023.42D.2.2

Keywords:

Structure, Single Walled Carbon Nanotube, Metal Semiconductor, Transition Symmetry, Band Gap, Corrugation, Armchair, Zigzag, Chiral

Abstract

We have studied structures of single walled carbon nanotubes and metal  semiconductor transition for the symmetric breaking. It was found that band gap  existed for metallic armchair single walled carbon nanotubes. Calculations were made  to analyse the meta-stability of the corrugated structures of armchair single walled  carbon nanotubes. The corrugated single walled carbon nanotube structures are always  lower in energy than the non corrugated nanotubes. The curvature effect was that the  corrugated structure breaks the local symmetry between different carbon atoms. A true  gap is created which does not vanish even when an external magnetic field is swept.  The corrugation length and band gap gaps are decaying functions of the nanotubes  radius and approached zero for carbon nanotube such as graphene. This was also true  for zigzag and chiral single wall carbon nanotubes. The obtained results were found in  good agreement with previously obtained results. 

References

Wallace. P. R. (1947), Phys. Rev. 71, 622. [2] Saito. R., Fujita. M, Dresselhaus. G and Dresselhaus. M. S. (1992), App. Phys. Lett. 60, 2204.

Hamada. N, Sawada. S. I. and Oshiyama. A, (1992), Phys. Rev. Lett. 68, 1579.

Mintmire. J. W and White C. T. (1998), Phys. Rev. Lett., 81, 2506.

Zhon. C, Kong. J and Dai. H, (2000), Phys. Rev. Lett., 84, 5604.

Ouyang. M, Huang. J. L., Cheung. C. L. and Lieber. C. M., (2001), Science, 292, 702.

Deshpande, V. V, Chandra. B, Caldwell. R, Nuvikov. D.S, Hone. J and Buckrath. M, (2009), Science, 323, 106.

Blasé. X, Benedict. L. X, Shirley. E. L, Louie. S.G., (1994), Phys. Rev. Lett. 72, 1878.

Yurikawa and Muramatsu. S, (1995), Phys. Rev. B, 52, 2723.

Chen. J, Yang. Z and Gu. J. (2004), Phys. Lett. B, 18, 769.

Amer. M. P, Bushmaker. A and Cromin. S. B., (2012), Nano Lett. 12, (4843).

Ajiki. H, Ando. T, (1996_), J. Phys. Soc. Jpn. 65, 505.

Kane. C, Balents. L and Fisher. M. P. A, (1997), Phys. Rev. Lett. 79, 5086.

Egger. R and Gogolin. A. O, (1997), Phys. Rev. Lett. 79, 5082.

Odintsov. A. A, and Yoshioka. H, (1999), Phys. Rev. Lett. 78, 1932.

Kane C. L. and Mele. E. J, (1997), Phys. Rev. Lett. 78, 1932.

Yang. L and Han. J (2000), Phys. Rev. Lett. 85, 154.

Huang. Y. H, Okada. M, Tanaka. K and Yamabe. T, (1996) Solid State commun. 97, 303.

Cohnetable. D, Rignanese, G. M. Charlier. J. C and Blasé. X, (2005), Phys. Rev. Lett. 94, 015503.

Harigaya. K and Fujita. M (1993) Phys. Rev. B, 47, 16563.

Viet. N. A, Ajiki. H and Ando. T, (1994), J. Phys. Soc. Jpn. 63, 3036.

Sahin. H, Cahangirov. S, Topsekal. M, Bekaroglu. E, Akturk. E, Senger. R. T. and Ciraci. S, (2009), Phys. Rev. B. 80, 155453.

Blasé. X, Rubio. A, Louie. S. G and Cohen. M. L, (1994), Eur. Phys. Lett., 28, 335.

Published

2023-12-22

How to Cite

Band Gap Mechanism for Armchair Single Walled Carbon Nanotubes and Metal Semiconductor Transition for Symmetry Breaking. (2023). Bulletin of Pure and Applied Sciences – Physics, 42(2), 75–79. https://doi.org/10.48165/bpas.2023.42D.2.2