Electronic Conductance of Nano Composite Polymer Single Walled Nanotube with Spin Spray Variant
DOI:
https://doi.org/10.48165/bpas.2023.42D.2.1Keywords:
Electronic conductance, Nano Composite, Polymer, Spin Spray, Poly Electrolyte, Polymetric Matrix, Conductivity, Quasi Two DimensionalAbstract
We have studied electronic conductance of nano composite polymer single walled nanotube with spin spray variant by using layer by layer technique. The study showed that there existed a critical number of polyelectrolyte bilayer below which the electronic conductance of the material was negligible. The sheet conductance increased above the critical value. This indicated that the material conductivity was controlled by the formation of a percolating network of highly conducting nanotubes in an insulating polymetric matrix. We have presented the dependence of junction resistance on the layer separation leaded to the logarithmic behavior. The quasi two dimensional model treated the nanotube as infinitely conducting rods with resistive junctions. A junction was formed when projections of two nanotubes on the plane of the material intersect. The junction resistance increased with inter layer separation. The results found were compared with previous results and were found in good agreement
References
Behnam. A, Guo. J and Ural. A, (2007), J. Appl. Phys. 102, 044313.
Hazama. Y, Ainoya. N, Nakamura. J and Natori. A, (2010), Phys. Rev. B, 82, 045204.
Li.C, Thostunson. E and Chou. T. W, (2008), Compos. Sci. Technol, 68, 1445. [4] Doherty. E. M, De. S, Lyons. P. E, Shemliov. A, Nirmalraj. P. N, Scardaci. V, Joimel. J, Balu. W. J, Boland. J. J and Coleman. J. N, (2009), Carbon, 47, 2466. [5] Nigro. B, Grimaldi. C, Ryser. P, Chatterjee. A. P. and Vander-Scoot. P, (2013), Phys.Rev. Lett. 110, 015701.
White. S. I, Didonna. B. A, Mu. M, Lubensky. T. C and Winey. K. I, (2009), Phys. Rev. B, 79, 024301.
Mutiso. R. M, Sherrott. M. C, Li. J, and Winey. K. I, (2012), Phys. Rev. B, 86, 214306.
Sheng. P, Sichel. E. K and Gittleman. J. I, (1978), Phys. Rev. Lett. 40, 1197.
Cornor. M. T, Roy. S, Ezquerra. T. A and Balta Calleja F. J.,(1998), Phys. Rev. B, 57, 2286.
Kilbride. B. E, Coleman. J. N, Fraysse. J, Fournet. P, Cadek. M, Drury. A, Hutzler. S, Roth. S and Blan. W. J, (2002), J.Appl. Phys. 92, 4024.
Kovacs. J.Z, Velagala. B.S, Schulte. K and Baunofer. W, (2007), Compos. Sci. Technol. 67, 922.
Hu. L, Hecht. D.S. and Gruner. G, (2010), Chem. Rev. 110, 5790.
Ariga. K, Hill. J. P. and Ji. Q,(2007), Phys. Chem. Chem. Phys, 9, 2319.
Lutkenhaus. J. L. and Hammod. P.T, (2007), Soft Matter. 3, 804.
Li. X, Gittleson. F, Carno. M, Sekol. R and Taylor. A, (2012), ACS Nano, 6, 1347.
Li. X, Jung. Y., Sakimoto. K, Goh. T. H, Reed. M. A. and Taylor. A. D., (2013), Energ. Environ. Sci, 6, 879.
Jung. Y, Li. X, Ranjan. N. K., Taylor. A. D and Reed. M. A. (2013), Nano. Lett. 13, 95.
Shim. B. S, Tang. Z, Morabito. M. P, Agarwal. A, Hong. H and Kotov. N. A, (2007), Chem. Matter 19, 5467.
Shim. B. S, Zhu. J, Jan. E, Critchley. K and Kotov. N. A, (2010), ACS Nano 4, 3725.
Mamedov. A.A, Kotov. N. A, Prato. M, Guldi. D. M., Wicksted. J. P and Hirsch. A, (2002), Nat. Mater, 1, 190.
Olek. M, Ostrander. J, Jurga. S, Mohwald. H, Kotov. N, Kempa. K and Giersig, (2004), Nano. Lett. 4, 1889.
Loh. K. J, Kim. J, Lynch. J. P, Kam. N. W. S and Kotov. N. A, (2007). Smart Mater, Struct. 16, 429.