A Review of Tracing Groundwater Contamination with Multiple Isotopes
DOI:
https://doi.org/10.48165/Keywords:
Hydrogeochemistry, Isotopes, Groundwater contamination, Anthropogenic, GIS approachAbstract
Groundwater is the most crucial source of freshwater and therefore widely used for the activities like drinking, domestic, irrigation and industrial purpose by humans. For a country like India, where 85% population depends on groundwater for drinking purpose, it cannot afford this natural source getting polluted and depleted. However, in the last couple of decades this resource is being deteriorated and affected adversely due to various reasons, which needs careful attention in time. The paper is focuses on the role of isotopic approaches for tracing out the groundwater contamination. The regional geological setting plays a role in contamination of the aquifers. Weathering of the rocks and the rock-water interactions releases many elements into the aquifers and chemically alter the natural composition of the aquifers. Anthropogenic activities further deteriorate the quality of water and restrict its utility for different purposes. This paper also gives a glimpse of the use of GIS-based approach implemented to trace the contamination in the groundwater. The measures and steps to be taken to have minimal damage to the groundwater system concerning to Indian context have also been highlighted.
Downloads
References
Acharyya, S. K. (2002). Arsenic contamination in groundwater affecting major parts of southern West Bengal and parts of western Chhattisgarh: Source and mobilization process. Current Science, vol. 82, no. 6, 2002, pp. 740-744. JSTOR, www.jstor.org/stable/24106701.
Adhikary, P. P., Dash, C. J., Chandrasekharan, H., Rajput, T. B. S., & Dubey, S. K. (2012). Evaluation of groundwater quality for irrigation and drinking using gis and geostatistics in a peri-urban area of Delhi, India. Arabian Journal of Geosciences 5, 1423–1434,
https://doi.org/10.1007/s12517-011-0330-7
Aher, K. R. (2017). Delineation of groundwater quality for drinking and irrigation purposes: a case study of Bori Nala watershed, district Aurangabad, Maharashtra, India. Journal of Applied Geochemistry, 19(3), 321-338.
Aravena, R., Evans, M. L., & Cherry, J. A. (1993). Stable Isotopes of Oxygen and Nitrogen in Source Identification of Nitrate from Septic Systems. Groundwater. Volume 13, Issue 2, 180- 186, https://doi.org/10.1111/j.1745-6584.1993.tb01809.x
Atkinson, A. P., Cartwright, I., Gilfedder, B. S., Hofmann, H., Unland, N. P., Cendón, D. I., & Chisari, R. (2015). A multi-tracer approach to quantifying groundwater inflows to an upland
river; assessing the influence of variable groundwater chemistry. Hydrological Processes. Volume 29, Issue 1, 1-12, https://doi.org/10.1002/hyp.10122
Barth, S. (1998). Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Research, 32(3), 685–690.
https://doi.org/10.1016/S0043-1354(97)00251-0
Baride M.V. and Patil S.N. Golekar R.B. (2014) Geomedical health hazard due to groundwater quality from Anjani - Jhiri River Basin, Northern Maharashtra, India. International Research Journal of Earth Sciences 2 (1) 1-14
Böhlke, J. K., & Horan, M. (2000). Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry. Volume 15, Issue 5, 599-609, https://doi.org/10.1016/S0883-2927(99)00075-X
Bullen, T. D., Krabbenhoft, D. P., & Kendall, C. (1996). Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochimica et Cosmochimica Acta. Volume 60, Issue 10, 1807-1821, https://doi.org/10.1016/0016-7037(96)00052-X
Central Ground Water Board. (2017). Ground water year book-India 2016-17. Ministry of Water Resources, Government of India.
Clark, I. (2015). Groundwater geochemistry and isotopes. Boca Raton: CRC Press, https://doi.org/10.1201/b18347
Clark, I. D., & Fritz, P. (2013). Environmental Isotopes in Hydrogeology.Boca Raton: CRC Press, https://doi.org/10.1201/9781482242911
Cooper, C. A., Mayer, P. M., & Faulkner, B. R. (2014). Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry121, 149-166, https://doi.org/10.1007/s10533-014-9968-z
Coyte, R. M., Jain, R. C., Srivastava, S. K., Sharma, K. C., Khalil, A., Ma, L., & Vengosh, A. (2018). Large-Scale Uranium Contamination of Groundwater Resources in India. Environmental Science and Technology Letters, 5(6), 341–347.
https://doi.org/10.1021/acs.estlett.8b00215
Das, B. K. (1999). Environmental pollution of Udaisagar lake and impact of phosphate mine, Udaipur, Rajasthan, India. Environmental Geology 38, 244-248,
https://doi.org/10.1007/s002540050421
Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology. Volume 24, Issue 1, 85-96, https://doi.org/10.1016/0169-7722(96)00004-6
Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., & Hadi, S. A. (1997). Groundwater arsenic calamity in Bangladesh. Current Science. Volume 73, Issue 1, 48-59
Ducci, D. (1999). GIS techniques for mapping groundwater contamination risk. Natural Hazards20, 279-294, https://doi.org/10.1023/a:1008192919933
FAO. (2003). Review of World Water Resources by Country: 2. Concepts and Definitions. http://www.fao.org/docrep/005/y4473e/y4473e06.htm
Fitts, C. R. (2013). 11 - Groundwater Contamination (C. R. B. T.-G. S. (Second E. Fitts (ed.); pp. 499–585). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384705- 8.00011-X
Gopinath, S., Srinivasamoorthy, K., Saravanan, K., & Prakash, R. (2019). Tracing groundwater salinization using geochemical and isotopic signature in Southeastern coastal Tamilnadu, India. Chemosphere. Volume 236, 124305, https://doi.org/10.1016/j.chemosphere.2019.07.036
Jalali, M. (2011). Nitrate pollution of groundwater in Toyserkan, western Iran. Environmental Earth Sciences62, 907-913, https://doi.org/10.1007/s12665-010-0576-5
Jiang, Y. (2011). Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China. Applied Geochemistry. Volume 26, Issue 3, 371- 379, https://doi.org/10.1016/j.apgeochem.2010.12.010
Katz, B. G., Coplen, T. B., Bullen, T. D., & Hal Davis, J. (1997). Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water. Volume 35, Issue 6, 1014-1028, https://doi.org/10.1111/j.1745-
1997.tb00174.x
Kendall, C., & Aravena, R. (2000). Nitrate Isotopes in Groundwater Systems. Environmental Tracers in Subsurface Hydrology, 1, 261–297. https://doi.org/10.1007/978-1-4615-4557-6_9 26. Kumar, S. K., Chandrasekar, N., Seralathan, P., Godson, P. S., and Magesh, N. S. (2012). Hydrogeochemical study of shallow carbonate aquifers Rameswaram Island, India. Environmental Monitoring and Assessment, v. 184(7), pp. 4127-4138
Lamsoge, B R, Pophare, A. M., & Katpatal, Y. B. (2019). Groundwater Quality of Shallow and Deeper Basaltic Aquifers , Warud Taluka , Amravati District , Maharashtra. Journal of Geosciences Research, Vol.2, (175-185)
Lamsoge, Bhushan R, Tambe, J. A., Ch, S. T. A., & Shende, R. R. (2011). Anthropogenic Nitrate and
Chloride Causing Telling Effect on Ground Water Quality of Darwha Town , Yavatmal District , Maharashtra. February, National Workshop on 'Role of Traditional Methods and Recent Technologies in Groundwater Augmentation and Management', 12th February 2011; Central Ground Water Board, Central Region, Nagpur 40–46.
Machiwal, D., Cloutier, V., Güler, C., & Kazakis, N. (2018). A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences, 77(19), 0. https://doi.org/10.1007/s12665-018-7872-x
Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80–110. https://doi.org/10.1016/j.ejrh.2014.11.005
Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W., & Konhauser, K. O. (2000). Migration and attenuation of agrochemical pollutants: Insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology. Volume 43, Issue 2, 147-163, https://doi.org/10.1016/S0169-7722(99)00104-7
Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environmental Geochemistry and Health, 40(6), 2259–2301. https://doi.org/10.1007/s10653-018-0096-x
MWR. (2017). GEC (2015) Ground Water Resource Estimation Committee. 34. Nath, B. K., Chaliha, C., Bhuyan, B., Kalita, E., Baruah, D. C., & Bhagabati, A. K. (2018). GIS mapping-based impact assessment of groundwater contamination by arsenic and other heavy metal contaminants in the Brahmaputra River valley: A water quality assessment study. Journal of Cleaner Production. Volume 201, 1001-1011.
https://doi.org/10.1016/j.jclepro.2018.08.084
Nisi, B., Raco, B., & Dotsika, E. (2016). Groundwater Contamination Studies by Environmental Isotopes: A review. In A. Scozzari & E. Dotsika (Eds.), Threats to the Quality of Groundwater Resources: Prevention and Control (pp. 115–150). Springer Berlin Heidelberg. https://doi.org/10.1007/698_2014_281
Pophare, A. M., Lamsoge, B. R., Katpatal, Y. B., & Nawale, V. P. (2014). Impact of over exploitation on groundwater quality : A case study from WR-2 Watershed , India.J. Earth Syst. Sci. 123, No. 7, October 2014, pp. 1541–15667.
Program, N. W. A. (2009). Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System , Northern United States Scientific Investigations Report 2009 – 5086. Water, 41.
Rueedi, J., Cronin, A. A., Taylor, R. G., & Morris, B. L. (2007). Tracing sources of carbon in urban groundwater using δ 13CTDIC ratios. Environmental Geology52(3), 541-557, https://doi.org/10.1007/s00254-006-0486-8
Saha, D., & Ray, R. K. (2019). Groundwater Resources of India : Potential , Challenges and Management : Issues and Challenges in South Asia. Groundwater Development and Management, pp. 19-42, https://doi.org/10.1007/978-3-319-75115-3_2.
Sarin, M. M., Krishnaswami, S., Trivedi, J. R., & Sharma, K. K. (1992). Major ion chemistry of the Ganga source waters: Weathering in the high altitude Himalaya. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 101(1), 89–98.
https://doi.org/10.1007/BF02839175
Sharma, M. K., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: an overview. Environmental Monitoring and Assessment, 192(2), 74.
https://doi.org/10.1007/s10661-019-8051-6
Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54(4), 745–758.
https://doi.org/10.1007/s00254-007-0860-1
Stewardship, W., & Series, I. (2007). Sodium in Groundwater. February. 44. Subba Rao, N., Subrahmanyam, A., Ravi Kumar, S., Srinivasulu, N., Babu Rao, G., Rao, P. S., & Reddy, G. V. (2012). Geochemistry and quality of groundwater of Gummanampadu sub basin, Guntur District, Andhra Pradesh, India. Environmental Earth Sciences67, 1451-1471, https://doi.org/10.1007/s12665-012-1590-6
Suhag, R., On, S. C., &
Resources, W. (2016). Overview of Ground Water in India. PRS Legislative Research, February, 12pp. https://doi.org/No. id: 9504
Taylor, C. B., & Fox, V. J. (1996). An isotopic study of dissolved inorganic carbon in the catchment of the Waimakariri river and deep ground water of the North Canterbury plains, New Zealand. Journal of Hydrology. Volume 186, Issues 1-4, 161-190,
https://doi.org/10.1016/S0022-1694(96)03027-2
Unesco. (1997). 5 - Applications to low-temperature systems. Most.
Vengosh, A., Heumann, K. G., Juraske, S., & Kasher, R. (1994). Boron Isotope Application for Tracing Sources of Contamination in Groundwater. Environmental Science and Technology. 28, 11, 1968-1974, https://doi.org/10.1021/es00060a030
Widory, D., Petelet-Giraud, E., Négrel, P., & Ladouche, B. (2005). Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis. Environmental Science and Technology, 39(2), 539–548. https://doi.org/10.1021/es0493897