Spectroscopic (IR, UV, NMR) characterization of 4, 8 -di methyl 2, 6 -di phenyl 1, 5 -di hydro S-Indacene and study of effect of substituents in its electronic properties

Authors

  • I Pushpavathi Department of Chemistry/Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Ballari, Karnataka 583104, India
  • K M Mussavir Pasha Department of Chemistry/Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Ballari, Karnataka 583104, India
  • S Muthu Department of Physics, Arignar Anna Govt.Arts College, Cheyyar,, Tamil Nadu 604407, India
  • M K Amshumali Department of Chemistry/Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Ballari, Karnataka 583104, India

DOI:

https://doi.org/10.48165/

Keywords:

Semi empirical methods, S-indacene, Fukui function, Electrophilicity indices, B3YLP

Abstract

In the present study, quantum computational  methods such as semi empirical, Hartree fock  and density functional theory (DFT) are used for  the analysis of molecular structure of 4, 8-di  methyl, 2, 6 - di phenyl, 1, 5 - di hydro S Indacene. Vibrational analysis was carried out  using DFT method with the basis set B3LYP/6– 31G (d, p) and the infrared and Raman spectra of  title compound were reported. Frequency  assignments of the vibration spectra were carried  out with potential energy distribution (PED).  Optimization of the title compound were  calculated by the methods AM1, PM6, HF/6-31G  and B3LYP/6-31G (d, p) basis set in gas phase.  Furthermore, effect of substituents of the title  molecule on its electronic properties such as  HOMO-LUMO energy gap, absorption maxima  and oscillator strengths in UV-Vis spectrum,  NBO analysis, TDOS, Fukui function and the  local softness and eletrophilicity indices were  calculated. The thermodynamic properties have  also been calculated and predicted the  relationship of these properties with temperature. 

Downloads

Download data is not yet available.

References

K. Hafner, Maja Nendela, Bernd Goldfussa, K.N. Houka, s-Indacene, a quasi-delocalized molecule with mixed aromatic and anti-aromatic character Theochem. 1999, 461 -462, 23-28 2. R. Shahidha , S. Muthu , M. Raja , R. Raj Muhamed , B. Narayana , Prakash S. Nayak , B.K. Sarojini Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizabilities, NBO, Fukui function and molecular docking study of N-(4-Chloro-3-methylphenyl)-2-phenylacetamide. Optik: International Journal for Light and Electron Optics, 2017,140, 1127(16)

S. Muthu, G. Ramachandran, Spectroscopic studies (FTIR, FT-Raman and UV-Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods. Spectrochim. Acta A ,2014,121, 394–403

R. Srinivasaraghavan, S. Thamaraikannan, S. Seshadri, T. Gnanasambandan, Molecular conformational stability and Spectroscopic analysis of Parared with experimental techniques and quantum chemical calculations. Spectrochim. Acta A , 2015,137 ,1194–1205.

H.B. Stiegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 1982, 3(2), 214–218.

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev.1988, B 37, 785–789.

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, T. Vreven, K. Kudin, J. Burant, J. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.Mennucci, M. Cossi, G. Scalmani, N. Rega, H. G.A. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, M.I.J. Fukuda, T. Hasegawa, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H.P. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, A.D.S. Zakrzewski, M. Dapprich, O. Strain, D.Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Cliord, G.L.B.B. Cioslowski, A. Stefanov, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, M. Keith, C.P. Al-Laham, A. Nanayakkara, M. Challacombe, P. Gill, W.C.B. Johnson, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision E.01, Gaussian Inc, Wallingford, 2004.

A. Frisch, A. Nielsen, A. Holder, Gaussview User’s Manual, Gaussian Inc., Pittsburgh, 2007. 9. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner. A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem. 2008, 29, 839–845.

P.L. Polavarapu, Ab initio vibrational Raman and Raman optical activity spectra J. Phys. Chem. 1990, 94, 8106–8112.

E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publ. Inc, Newyork, 1980.

A. Jayaprakash, V. Arjunan, S.P. Jose, S. Mohan, Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on crotonaldehyde by ab initio and DFT methods. Spectrochim. Acta, 2011, 83A, 411–419.

P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives, J. Am. Chem. Soc. 1979,101, 2550– 2560.

Ozgur Alver, Cemal Parlak, and Mustafa Şenyel, NMR spectroscopic study and DFT calculations of giao nmr shielding and 1JC-H spin-spin coupling constants of 1, 9-diaminononane. Chem. Soc. Ethiop. 2009, 23(1), 85-96.

Krushelnitsky, A.; Reichert, D. Complex 1H,13C-NMR relaxation and computer simulation study of side-chain dynamics in solid polylysine. Biopolymers, 2005, 78(3), 129.

Krushelnitsky, A.; Reichert, D. Prog. NMR spectroscopy in liquids and solids, NMR Spectrosc. 2005, 47, 1.

Senyel, M.; Alver, O.; Parlak, C. NMR Spectroscopic Study And Dft Calculations Of Vibrational Analyses, Giao Nmr Shieldings And 1 JC-H, 1JC-C Spin-Spin Coupling Constants Of 1,7- Diaminoheptane Spectrochim. Acta A 2008, 71, 830.

Parlak C, Alver O, Senyel M, FT-IR and NMR investigation of 1-phenylpiperazine: a combined experimental and theoretical study. Spectrochim. Acta A 2006, 67(3-4), 793-801. 19. Zhang Y, Li, T, Teng.Q, Theoretical Study on Electronic Structures and Spectroscopy of Triarylborane Substituted By Thiophene. Bull. Chem. Soc. Ethiop. 2009, 23, 77. 20. Barone. G, Paloma. L.G, Duca, D, Silvestri. A, Riccio. R, Bifulco. G, Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts. Chem. Eur. J. 2002, 8, 3233.

D. Sajan, I.H. Joe, V.S. Jajakumar, J. Zaleski, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate J. Mol. Struct. 2006, 785(1-3), 43–53. 22. K.S. Thanthiri Watte, K.M. Nalin de silva, Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations. J.Mol. Struct. Theochem. 2002, 617, 169– 175.

S.G. Sagdinc, A. Esme, NMR, UV-Visible, NLO, NBO, MEP and Vibrational Spectroscopic (IR and Raman) Analysis, Spectrochim. Acta A, 2010, 75, 1370–1380.

D.F.V. Lewis, C. Loannides, D.V. Parke, Interaction of a series of nitriles with the alcohol inducible isoform of P450: Computer analysis of structure—activity relationships Xenobiotica, 1994, 24, 401–408.

R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory.Proc. Natl. Acad. Sci. 1986, 83, 8440–8441.

R. Hoffmann, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, VCH Publishers, New York, 1988.

J.G. Małecki, Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands, Polyhedron, 2010, 29, 1973–1979. 28. E. Rutherford, Philos. Mag. 47 (284) (1899) 9.

M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, A density functional study of clean and hydrogen-covered α-MoO3(010): Electronic structure and surface relaxation. J. Chem. Phys. 1998,109, 6854–6860.

Pulay P, Fogarasi G, Ponger G, Boggs JE, Vargha A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J. Am. Chem. Soc.1983, 105, 7037-7047.

Fogarasi G, Zhou X, Taylor PW, Pulay P. The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. J. Am. Chem. Soc.1992, 114, 8191-8201.

Kolandaivel P, Praveen G, Selvarengan P. Study of atomic and condensed atomic indices for reactive sites of molecules. J. Chem. Sci.2005, 11, 591-598.

S. Muthu, E. Isac Paulraj, Spectroscopic and molecular structure (monomeric and dimeric structure) investigation of 2-[(2-hydroxyphenyl) carbonyloxy] benzoic acid by DFT method: A combined experimental and theoretical study. J. Mol. Struct. 2013, 1038, 145–162.

Weitao Yang, Wilfried J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines.J. Am. Chem. Soc. 1986, 108, 5708–5711. 35. Sun YX, Hao QL, Wei WX, Yu ZX, Lu LD, Wang X, Wang YS. Experimental and density functional studies on 4-(3, 4- dihydroxybenzylideneamino) antipyrine, and 4-(2, 3, 4- trihydroxybenzylideneamino) antipyrine. J. Mol. Struct. (Theochem.) 904, 2009, 74-82.

Published

2019-02-02

How to Cite

Spectroscopic (IR, UV, NMR) characterization of 4, 8 -di methyl 2, 6 -di phenyl 1, 5 -di hydro S-Indacene and study of effect of substituents in its electronic properties . (2019). Bulletin of Pure and Applied Sciences-Chemistry , 38(1), 40–59. https://doi.org/10.48165/