A Review on - Hybrid Nanomaterials for Future Applications in Construction

Authors

  • R D Pruthviraj Associate Professor, Department of Chemistry, Rajarajeswari College of Engineering, Bangalore, Karnataka 560074, India
  • N Gangadhara Assistant Professor, Department of Civil Engineering, Rajarajeswari College of Engineering, Bangalore, Karnataka 560074, India
  • A A Jahagirdar Professor, Department of Chemistry, Dr. Ambedkar Institute of Technolohy, Bangalore, Karnataka 560056, India
  • Santhosh A S Kumar Research Scholar, Department of Chemistry, Bangalore University, Bangalore, Karnataka 560056, India

DOI:

https://doi.org/10.48165/

Keywords:

Hybrid nanomaterials, Inorganic metals, Metals, NPs

Abstract

Crossover nanomaterials contain at least two  unique segments, commonly inorganic segments  (metal particles, metal bunches or particles, salts,  oxides, sulfides, non-metallic components and  their subordinates, and so on) and natural  segments (natural gatherings or atoms, ligands,  biomolecules, drug substances, polymers, and so  on) that are united by explicit cooperations which  bring about the synergistic improvement of their  practical properties. A pecking order of  connections might be associated with the  development of half breed materials, from the  structure of atoms (covalent bonds, π complexation, and so forth) to nanoscale  restricting and self-gathering (a wide assortment  of intermolecular collaborations, including  electrostatic communications, scattering  cooperations, H-holding, and so on) and  microstructuring (agreeable collaborations in  various modes). The blend of various segments  and primary formats with various kinds of  associations brings about a basically endless  assortment of interesting assignment explicit  materials. 

Downloads

Download data is not yet available.

References

Loy D.A., Shea K.J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chem. Rev. 95, 1431–1442. doi: 10.1021/cr00037a013. [CrossRef] [Google Scholar]

Díaz U., Brunel D., Corma A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chem.

Soc. Rev. 42, 4083–4097. doi: 10.1039/c2cs35385g. [PubMed] [CrossRef] [Google Scholar]

Hayami R., Wada K., Nishikawa I., Sagawa T., Yamamoto K., Tsukada S., Gunji T. (2017). Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polym. J. 49, 665–669. doi: 10.1038/pj.2017.34. [CrossRef] [Google Scholar]

Soliveri G., Annunziata R., Ardizzone S., Cappelletti G., Meroni D. (2012). Multiscale Rough Titania Films with Patterned Hydrophobic/Oleophobic Features. J. Phys. Chem. C. 116, 26405–

doi: 10.1021/jp309397c. [CrossRef] [Google Scholar]

Diaz U., Corma A. (2018). Organic Inorganic Hybrid Materials: Multi Functional Solids for Multi-Step Reaction Processes. Chem. Eur. J. 24, 3944–3958. doi: 10.1002/chem.201704185. [PubMed] [CrossRef] [Google Scholar]

Meroni D., Ardizzone S., Schubert U.S., Höppener S. (2012). Probe-Based Electro Oxidative Lithography of OTS SAMs Deposited onto Transparent ITO Substrates. Adv. Funct. Mater. 22, 4376– 4382. doi: 10.1002/adfm.201200673. [CrossRef] [Google Scholar]

Sanchez C., Belleville P., Popall M., Nicole L. (2011). Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696–753. doi: 10.1039/c0cs00136h. [PubMed] [CrossRef] [Google Scholar]

Colombo A., Dragonetti C., Magni M., Meroni D., Ugo R., Marotta G., Lobello M.G., Salvatori P., De Angelis F. (2015). New thiocyanate-free ruthenium(II) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. Dalton Trans. 44, 11788–11796. doi: 10.1039/C5DT01216C. [PubMed] [CrossRef] [Google Scholar]

Liao T.-W., Verbruggen S.W., Claes N., Yadav A., Grandjean D., Bals S., Lievens P. (2018). TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light. Nanomaterials. 8, 30. doi: 10.3390/nano8010030. [PMC free article] [P

Panzarasa G., Osypova A., Consolati G., Quasso F., Soliveri G., Ribera J., Schwarze F.W.M.R. (2018). Preparation of a Sepia Melanin and Poly (ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification. Nanomaterials. 8, 54. doi: 10.3390/nano8020054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Ren K., Zhang W., Cao S., Wang G., Zhou Z. (2018). Carbon-Based Fe3O4 Nanocomposites Derived from Waste Pomelo Peels for Magnetic Solid-Phase Extraction of 11 Triazole Fungicides in Fruit Samples. Nanomaterials. 8, 302. doi: 10.3390/nano8050302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lu H., Wang J., Hao H., Wang T. (2017). Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr (VI) and 4-

Chlorophenol. Nanomaterials. 7, 303. doi: 10.3390/nano7100303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Desmecht A., Steenhaut T., Pennetreau F., Hermans S., Riant O. (2018). Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids. Chem. Eur. J. 24, 12992–13001. doi: 10.1002/chem.201802301. [PubMed] [CrossRef] [Google Scholar]

Yin P.T., Shah S., Chhowalla M., Lee K.B. (2015). Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev. 115, 2483–2531. doi: 10.1021/cr500537t. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Das D., Sabaraya I.V., Sabo-Attwood T., Saleh N.B. (2018). Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process. Nanomaterials. 8, 403. doi: 10.3390/nano8060403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Sansotera M., Talaeemashhadi S., Gambarotti C., Pirola C., Longhi M., Ortenzi M.A., Navarrini W., Bianchi C.L. (2018). Comparison of Branched and Linear Perfluoropolyether Chains Functionalization on Hydrophobic, Morphological and Conductive Properties

of Multi-Walled Carbon Nanotubes. Nanomaterials. 8, 176. doi: 10.3390/nano8030176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lu J., Jiao C., Majeed Z., Jiang H. (2018). Magnesium and Nitrogen Co-Doped Mesoporous Carbon with Enhanced Microporosity for CO2 Adsorption. Nanomaterials. 8, 275. doi: 10.3390/nano8050275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Truong J., Hansen M., Szychowski B., Xie T., Daniel M.-C., Hahm J. (2018). Spatially Correlated, Single Nanomaterial-Level Structural and Optical Profiling of Cu Doped ZnO Nanorods Synthesized via Multifunctional Silicides. Nanomaterials. 8, 222. doi: 10.3390/nano8040222. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Predoi D., Iconaru S.L., Buton N., Badea M.L., Marutescu L. (2018). Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite. Nanomaterials. 8, 291. doi: 10.3390/nano8050291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Batool F., Strub M., Petit C., Bugueno I.M., Bornert F., Clauss F., Huck O., Kuchler Bopp S., Benkirane-Jessel N. (2018). Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. Nanomaterials. 8, 337. doi: 10.3390/nano8050337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Vázquez-Velázquez A.R., Velasco-Soto M.A., Pérez-García S.A., Licea-Jiménez L. (2018). Functionalization Effect on Polymer Nanocomposite Coatings Based on TiO2–SiO2 Nanoparticles with Superhydrophilic Properties. Nanomaterials. 8, 369. doi: 10.3390/nano8060369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wang Y., Cao J., Qin C., Zhang B., Sun G., Zhang Z. (2017). Synthesis and Enhanced Ethanol Gas Sensing Properties of the g C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite. Nanomaterials. 7, 285. doi: 10.3390/nano7100285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Jodłowski P.J., Jedrzejczyk R.J., Chlebda D.K., Dziedzicka A., Kuterasinski Ł., Gancarczyk A., Sitarz M. (2017). Non Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation. Nanomaterials. 7, 174. doi: 10.3390/nano7070174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kim Y.-M., Hwang B.-Y., Lee K.-W., Kim J.-Y. (2018). Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer. Nanomaterials. 8, 321. doi:

3390/nano8050321. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 25. Wu Y., Chen W., Chen G., Liu L., He Z., Liu R. (2018). The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials. 8, 356. doi: 10.3390/nano8060356. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 26. National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiencies. [(accessed on 23 October 2018)]; Available online:

https://www.nrel.gov/pv/assets/pdfs/p v-efficiencies-07-17-2018.pdf.

Published

2021-07-12

How to Cite

A Review on - Hybrid Nanomaterials for Future Applications in Construction . (2021). Bulletin of Pure and Applied Sciences-Chemistry , 40(1), 39–47. https://doi.org/10.48165/