Synthesis and Spectral Characterization Copper(II) Schiff Base Complex Derived from 3-hydroxyquinoxaline-2-carboxaldehyde

Authors

  • V Arun Assistant Professor, P.G. Department of Chemistry, Sree Narayana College, Punalur, Kerala 691305, India
  • S V Manoj Assistant Professor, P.G. Department of Chemistry, Sree Narayana College, Kollam, Kerala 691001, India
  • D B Ambili Raj Assistant Professor, P.G. Department of Chemistry, Sree Narayana College, Chempazhanthy, Kerala 695587, India

DOI:

https://doi.org/10.48165/

Keywords:

Schiff Base, Copper(II), 1,2-diamino benzene, 3-Hydroxyquinoxaline-2-carboxaldehyde, Binuclear Schiff base complex

Abstract

A new binuclear Schiff base complex of copper(II), [Cu2LCl2] (where H2L is N,N’- bis(3- hydroxyquinoxaline-2-carboxalidene) 1,2-diaminobenzene) with a square-planar geometry around  each copper(II) has been synthesized. The complex was characterized using elemental analysis,  conductivity measurements, UV-Visible spectra, FT-IR Spectra, EPR, thermal analysis and magnetic  moment measurements. 

Downloads

Download data is not yet available.

References

. Hu, S.-C., Chen, Y.-W. (2001). Liquid phase hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on zinc oxide-based binary oxides. J. Chem. Technol. Biotechnol. 76, 954–958. https://doi.org/10.1002/jctb.454

. Struijk, J., Moene, R., Van der Kamp, T., Scholten, J.J.F. (1992). Partial liquid phase hydrogenation of benzene to cyclohexene over ruthenium catalysts in the presence of an aqueous salt solution: II. Influence of various salts on the performance of the catalyst.

Appl. Catal. A 89, 77-102. https://doi.org/10.1016/0926-

X(92)80079-R

. Industrial Organic Chemical: Starting Materials and Intermediates: An Ullamann’s Encyclopedia, vol. 6 (Wiley/VCH, New York, 1999).

. Malik, M.A., Dar, O. A., Gull, P., Wani, M. Y., Hashmi A. A. (2018). Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Med. Chem. Commun., 9, 409-

DOI: 10.1039/c7md00526a

. Manjunath, M., Kulkarni, A. D., Bagihalli, G. B., Malladi, S., and Patil, S. A. (2017). Bio-important antipyrine derived Schiff Bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. J. Mol. Struct., 1127, 314–321. http://dx.doi.org/10.1016/j.molstruc.

07.123

. Manjunatha, M., Vinod H. Naik, Ajaykumar D. Kulkarni, Sangamesh A. Patil (2011). DNA cleavage, antimicrobial, anti-inflammatory anthelmintic activities, and spectroscopic studies of Co(II), Ni(II), and Cu(II) complexes of biologically potential coumarin Schiff bases. Journal of Coordination Chemistry, 64:24, 4264-4275, DOI: 10.1080/00958972.2011.621082

. More, M.S., Joshi, P.G., Mishra, Y.K., Khanna, P.K. (2019). Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Materials Today Chemistry, 14, 100195-100217, https://doi.org/10.1016/j.mtchem.20

100195

. Zayed, E.M., Mohamed, G.G. Hindy, A.M.M. (2015). Transition metal complexes of novel Schiff base. J Therm Anal Calorim, 120, 893–903.

https://doi.org/10.1007/s10973-014- 4061-3

. Arun V, Sridevi N, Robinson PP, Manju S, Yusuff, K. K. M. (2009). Ni(II) and Ru(II) Schiff base complexes as catalysts for the reduction of benzene.

J Mol Catal A Chem., 304:191-198. doi:10.1016/j.molcata.2009.02.011

. Vogel, A.I. (1978). A Text Book of Quantitative Inorganic Analysis, 3rd ed., Longman, London.

. Kulkarni, A.D., Bagihalli, G.B., Patil, S.A., Badami, P.S. (2009). Synthesis, characterization, electrochemical and in-vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with Schiff bases of formyl coumarin derivatives. J. Coord. Chem. 62 3069- 3072.

http://dx.doi.org/10.1080/009589709 02914569

. Clark, Robin J. H.; Williams, Charles S. (1965). The Far-Infrared Spectra of Metal-Halide Complexes of Pyridine and Related Ligands. Inorganic Chemistry, 4(3), 350–357. doi:10.1021/ic50025a020

. Lever ABP. (1984). Inorganic Electronic Spectroscopy, Elsevier: New York

. Kamal Z. Ismail. (2000). Synthesis, spectroscopic, magnetic and biological activity studies of copper(II) complexes of an antipyrine Schiff base. 25(5), 522–528. doi:10.1023/a:1007072911095

. Moamen S. Refat, Ibrahim M. El-Deen, Zeinab M. Anwer Samir El Ghol (2009). Spectroscopic studies and biological evaluation of some transition metal complexes of Schiff base ligands derived from 5-arylazo salicylaldehyde and thiosemicarbazide. Journal of Coordination Chemistry, 62:10, 1709- 1718, DOI: 10.1080/0095897080268420 5

. Sallam S.A. (2006). Binuclear copper(II), nickel(II) and cobalt(II) complexes with N2O2 chromophores of glycylglycine Schiff-bases of acetylacetone, benzoylacetone and thenoyltrifluoroacetone. Transition Met Chem 31: 46-55. DOI: 10.1007/s11243- 005-6312-4

. Wendlandt WW. (1996). Modern aspects of reflectance spectroscopy, Plenum press, New York

. Hathaway, B., Duggan, M., Murphy, A., Mullane, J., Power, C., Walsh, A., & Walsh, B. (1981). The stereochemistry and electronic properties of fluxional six-coordinate copper(II) complexes. Coordination Chemistry Reviews, 36, 3, 267-324, https://doi.org/10.1016/S0010-

(00)80501-9.

. Rapheal, P.F., Manoj, E., Prathapachandra Kurup, M.R. (2007). Copper(II) complexes of N(4)substituted thiosemicarbazones derived from pyridine-2- : Crystal structure of a binuclear complex., 26(4), 818– 828. doi:10.1016/j.poly.2006.09.091

. Daniel, K., & Robert, N. (1961). ESR Studies on the Bonding in Copper Complexes. The Journal of Chemical Physics, 35(1), 149.

. Naushad, A., Manawwer, A., Rizwan, W., Mukhtar A., and Ashfaq, A.

(2020). Synthesis, spectral and thermo kinetics explorations of Schiff-base derived metal complexes. Open Chemistry, 18(1), 1304- 1315. https://doi.org/10.1515/chem 2020-0168.

Published

2021-12-15

How to Cite

Synthesis and Spectral Characterization Copper(II) Schiff Base Complex Derived from 3-hydroxyquinoxaline-2-carboxaldehyde . (2021). Bulletin of Pure and Applied Sciences-Chemistry , 40(2), 90–95. https://doi.org/10.48165/