The Possibility of Silicon-Based Life

Authors

  • Ricardo Gobato Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil.
  • Alireza Heidari Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
  • Abhijit Mitra Department of Marine Science, University of Calcutta, 35 B.C. Road Kolkata, 700019, India.
  • Lauro Figueroa Valverde University Autonomous of Campeche (Faculty of Chemical-Biological Sciences), Calle Av. AgustínMelgar s/n, Buenavista, 24039 Campeche, Mexico.

DOI:

https://doi.org/10.48165/

Keywords:

Silicon, Astrobiology, Exobiology, Hartree-Fock Methods, Van der Waals, Life

Abstract

Silicon is the most obvious potential substitute for carbon, and the Possibility of Silicon-Based Life is  the focus of the work. An analysis of the sites of action of four silicon-based exobiological  nanomolecules, determined by the distribution of electrical charges around the nanomolecules atoms  called: ASi, CSi, GSi and TSi. The Van der Waals radius distribution calculations have been  determined via ab initio Hartree-Fock methods, Unrestricted and Restrict (UHF and RHF)  in the set of bases used Effective Core Potential (ECP) minimal basis, and CC-pVTZ (Correlation consistent valence-only basis sets triple-zeta). Polymers can also be assembled as chains of alternating  elements such as Si-C, Si-O, and B-N. Alternation with carbon is used to some extent in terran  organisms (such as C-C-N in proteins and C-C-C-O-P-O in nucleic acids), and silated compounds  play important structural roles in the cells of many organisms on Earth. 

Downloads

Download data is not yet available.

References

G. Mamikunian and M. H. Briggs (Eds.). Current Aspects of Exobiology. Jet Propulsion Laboratory, California Institute of Technology, 1965.

A. M. Shaw. Astrochemistry: From Astronomy to Astrobiology. 2006.

G. Horneck and P. Rettberg. Complete Course in Astrobiology. Series: Physics Textbook, Wiley-VCH, 2007.

J. J. W. McDouall. Computational Quantum Chemistry. Molecular Structure and Properties in Silico. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK, 2013.

S. Patai and Z. Rappoport. The Chemistry of Organic Silicon Compounds. Series: The Chemistry of functional groups, Wiley, 1989.

R. Gobato. Infrared spectrum for the new nanomolecules ASi, CSi, TSi and GSi. Arch Biomed Eng and Biotechnol, 5:3, 2021.

R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra. Applying, "ab initio" hartree-fock methods to exobiological nanomolecules. Physics of Biology, 2021.

R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra. Applying ab initio hartree-fock methods to exobiology nano-molecules. ResearchGate.

R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra. Applying ab initio hartree-fock methods to exobiology nano-molecules. J Current Eng Techno, 3.

R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra. Infrared spectrum for the new exobiological nanomolecules ASi, CSi, TSi and GSi. Sumerianz Journal of Scienti c Research, 4.

R. Gobato, M. R. R. Gobato, A. Heidari, and A. Mitra. Spectroscopy and dipole moment of the molecule C13H20BeLi2SeSi via quantum chemistry using ab initio, Hartree-Fock method in the base set cc pvtz and 6 311g**(3df, 3pd). American Journal of Quantum Chemistry and Molecular Spectroscopy, 2.

I. N. Levine. Quantum Chemistry. Pearson Education (Singapore) Pte.Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed., 2003.

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation e ects. Phys. Rev, 140.

J. M. Thijssen. Computational Physics. Cambridge University Press, Cambridge, 2001.

A. K. Wilson, T. van Mourik, and T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem), 388:339 49, 1996.

Computational methods in optimization. Elsevier, 77, 1971.

M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory: Gamess a decade later. theory and applications of computational chemistry: the rst forty years. Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), page 1167 1189, 2005.

M. S. et al. Gordon. General atomic and molecular electronic structure system (GAMESS). J. Comput. Chem, 14:1347 1363, 1993.

Louis N. Irwin Dirk Schulze-Makuch. Life in the Universe: Expectations and Constraints (Advances in Astrobiology and Biogeophysics). Advances in Astrobiology

and Biogeophysics. Springer, 2nd edition, 2008.

M. Gargaud; H. Martin; P. C. M. Gargaud. Lectures in astrobiology II. Advances in Astrobiology and Biogeophysics. Springer, 1 edition, 2006.

Stephen Freeland Charles Harper John Barrow, Simon Conway Morris. Fitness of the cosmos for life: biochemistry and ne tuning. Cambridge astrobiology, 2. Cambridge University Press, 1th edition, 2008.

J. Seckbach (eds.) Joseph Seckbach (auth.). Origins: Genesis, Evolution and Diversity of Life. Cellular Origin, Life in Extreme Habitats and Astrobiology 6. Springer Netherlands, 1 edition, 2005.

François Raulin (eds.) Julian Chela-Flores (auth.), Julian Chela-Flores. Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe: Proceedings of the Fifth Trieste Conference on Chemical Evolution: An Abdus Salam Memorial Trieste, Italy, 22 26 September 1997. Springer Netherlands, 1th edition, 1998.

Shaw A M. Astrochemistry, From Astronomy to Astrobiology. 2006.

A Brack; B Fitton; F Raulin; A Wilson; European Space Agency. Exobiology in the solar system and the search for life on Mars: report from the ESA Exobiology Team Study, 1997-1998. ESA SP, 1231. ESA Publications Division, 1999.

Petra Rettberg Gerda Horneck. Complete Course in Astrobiology. Physics Textbook. Wiley-VCH, wiley-vch edition, 2007.

Vinod Tewari Joseph Seckbach (eds.) William Sallun Filho, Thomas Rich Fairchild (auth.). Stromatolites: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and

Astrobiology 18. Springer Netherlands, 1th edition, 2011.

Klahr H. (eds.) Brandner W. Planet formation. Cambridge Astrobiology. CUP, 2006.

Freeland S. Harper C. (eds.) Barrow J., Morris S.C. Fitness of the cosmos for life. Cambridge Astrobiology. CUP, 2008.

H. Martin, J. Reisse, C. de Duve Muriel Gargaud, Bernard Barbier. Lectures in Astrobiology: Vol I (Advances in Astrobiology and Bio- geophysics). Springer, 1 edition, 2005.

Andrew M. Shaw (Author). Astrochemistry: From Astronomy to Astrobiology. 1th edition, 2006.

Wikipedia. The Free Enc. Ryzen. Creative Commons. (CC-BY 4.0), 2022.

Wikipedia. The Free Enc. Asus. Creative Commons. (CC-BY 4.0), 2022.

Creative Commons. (CC-BY 4.0), 2022. 35. R. Dennington, T. Keith, and J. Millam. Gaussview, version 5. 2009.

Computational results obtained using software programs from Dassault Systemes biovia. The ab initio calculations were performed with the dmol3 program, and graphical displays generated with draw. BIOVIA Draw 2017 Enterprise. MDL Draw Editor 17.1.0.900, 2017.

R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem, 4:187 217, 1983.

B. R. Brooks, C. L. Brooks III, A. D. MacKerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, and et al. M. Karplus. Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem, 30:1545 1614, 2009.

Published

2022-06-12

How to Cite

The Possibility of Silicon-Based Life . (2022). Bulletin of Pure and Applied Sciences-Chemistry , 41(1), 52–58. https://doi.org/10.48165/