A Study on Heavy Metal Sources and Pollution: Challenge to Biological and Ecosystem

Authors

  • Vasundhara Arora Department of Botany Chaudhary Charan Singh University Meerut, Uttar Pradesh 250001, India.
  • Navneet Bithel Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
  • Raj Singh Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana 133207, India

DOI:

https://doi.org/10.48165/bpas.2023.42B.1.7%20

Keywords:

Heavy metals, Pollution, Microbial populations, Toxic, Molecular Mechanisms

Abstract

The heavy metals pollution is a major environmental problem the modem  world is facing today. These are major inorganic contaminants in the  environment. Though a number of heavy metals are essential micronutrients  for both plants and animals, but these are toxic at higher concentrations. The  heavy metal ions of Al, Cr, Mn,Ca, Fe, Ni, Ca, Zn, Cd, Hg and Pb are major  inorganic contaminants in the environment. These also affect soil microbial populations and their metabolic activities. These adversely affect the molecular  mechanisms of life. The weathering of bedrock, volcanoes, forest fires and dust  are natural sources of heavy metals to soils and ecosystems. The man made  activities such as mining, smelting, printing, battery-manufacturing,  electroplating, tanning etc. are resulting in high concentrations of these metals  in the environments. This study described the different sources of heavy  metals and their health hazards.  

Downloads

Download data is not yet available.

References

Adriano, D.L. (1986). Trace elements in the terrestrial environment, Springer-Verlag, New York.

Akpore, O.B. and M. Muchie (2010). Remediation of heavy metals in drinking water and wastewater treatment systems:

Processes and applications. Inter. Jour. Phy. Sci., 5, 1807-1817.

Athar, R. and M. Ahmad (2002). Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Poll. 138, 165-180,

Atkinson, B. W., Bux, F. and H. C. Kasan (1998) Considerations for application of biosorption technology to remediate metal contaminated industrial effluents, Water SA, 24, 129-135.

Aust, S. D. (1990). Degradation of environmental pollutants. Microb. Ecol., 20, 197-209.

Britto, AJ. and T.A. Geetha (1994). Effect of chromium on the morphological parameters of seedlings in five varieties of Phaseolus mungo. Flora and Fauna, 3, 109-112.

Bumpus, J. A. and B.J. Brock (1988). Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ, Microbiol., 54, 1143,

Chander and D.S. Arora (2007). Evaluation of some white-rot fungi for their potential to decolourise Industrial days. Dyes and pigments, 72, 92-198.

Crusberg, T.C., Mark, S.S. and A, Dilorio (2004). Biomineralisation of heavy metals. In "Fungal Biotechnology in Agricultural, Food and Environmental Application." (Ed. Arora, D.K) Marcel-Dekker, U.S.A.: pp. 409- 417.

Das, N., Vimala, R. and P. Karthika (2008). Biosorption of heavy metals - An overview. Indian J. Biotechnology, 7, 159-169.

Davidson, C.I., Santhanam, S., Fortimann, R.C. and M.P. Olson (1985). Atmospheric transport and deposition of trace elements onto the Greenland ice shoet. Atmos. Environ, 19, 2065.

Duruibe, J. O., Ogwuegbu, M. O. C. and J. N. Egwurugwu (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2,

-118.

Dushenkov, V., Kumar, P. B. A N., Motto, H. and I. Raskin (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ. Sci. Tech., 29,

-1245.

Ehrlich, H.L. and D.K Newman (2009). Geomicrobiology (5th edn.), Boca Raton, FL: CRC Press/Taylor & Francis.

Eichenberger, E. (1986). The interrelationship between essentiality and toxicity of metals in aquatic ecosystem. In "Metal ions in Biological Systems" (Siegel, H. and A. Siegel, eds.). Marcel Dekker, Inc., New York; pp. 97-100.

Eisler, R. (2003). Bio-recovery of gold. Indian Journal of Experimental Biology, 41, 987-971. 17. Fomina, M., Buford, E. P. and G. P. Gadd

(2004) Fungal dissolution and transformation of (Gadd, G. M. ed.), Cambridge University Press, Cambridge, UK, pp. 236-266.

Fomina, M., Buford, E. P., and G. P. Gadd (2005) Toxic metals and fungal communities. In "The J. F. and P. Oudemans), Boca Raton, FL, USA. pp. 733-758.

Gadd, G. M. (1992). Microbial control of heavy metal pollution. In "Microbial Control of Pollution' (Eds. Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W. and I. A. Watson-Graik), Cambridge University Press, Cambridge: pp. 216.

Gadd, G. M. and C. White (1989). Heavy metal and radionuclide accumulation and toxicity in fungi. In "Microbe Interactions" (Polle, R. K and G. M. Gadd eds.). IRL Press; pp. 19-38.

Gadd, G.M. (1986). The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology. In: Immobilisation of lons by Bio-sorption (Eccles H. and S.H. Chichester, eds.), Ellis Horwood, pp: 135–147.

Gaur, A. and A. Adholeya (2004) Properties of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soil. Current Science, 86, 528-

Gupta, S.K. (1992). Mobilizable metal in anthropogenic contaminated soils and its ecological significance. In: "Impact of heavy metals on the environment, (Vernet, J.P. ed.) Elsevier, Amsterdam the Netherlands; pp. 299-310.

Hemambika, B., Rani, M.J. and V. Rajesh Kannan (2011). Biosorption of heavy metals by immobilized and dead fungal cells: A

comparative assessment. J. Eco. Nal. Environ., 3, 168-175.

Herawati, N., Susuki, S., Hayashi, K., Rivai, I.F. and H. Koyama (2000). Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull. Environ. Contam. Toxicol., 64, 33-39.

Javaid, A., Bajwa, R., and A. Javaid (2010). Biosorption of heavy metals using a dead macro fungus Schizophyllum commune Fries: evaluation of equilibrium and kinetic models. Pak. J. Bot., 42, 2105-2118.

Jones, K.C., Symon, C.J. and A.E. Johnston (1988). Atmospheric inputs of cadmium to an arable agricultural system. In "Air pollution and ecosystems" (Ed. Mathy, P.), D. Reidel Publishing, Dordrecht.

Lacina, C., Germain, G. and A. 20-Spiros (2003). Utilization of fungi for bio-treatment of raw waste water. J. Biotech., 2, 620-630.

Lata, S., Kumar, S. and R.M. Johri (2005). Detection of heavy metals in chemical factory effluent and their effect Phaseolus mungo C.V.T.-9. J. Indian Bot. Soc. 81, 97-109.

Lesmano, S.O., Febriana, N., Soetaredjo. P.E., Sunarso, J. and S. Ismadji (2009). Studies on potential application of biomass for the separation of heavy metals from water and waste water. Biochemical Engineering Journal, 44(1), 19-41.

Marandi, R. (2011). Biosorption of hexavalent chromium from aqueous solution by dead fungal biomass of Phanerochaete chrysosporium: batch and fixed bed studies. Canadian J. Chem. Eng& Technol., 2, 8-22.

McGrath, S.P., Chaudri, A.M and K.E. Giller (1995). Long term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94-104.

Nawachukwu, M.A., Feng, H. and J. Alinnor (2010). Assessment of heavy metal pollution in soil and their implication within and around mechanic villages. Intern. J. of Environ, Sci. and Technol., 7, 347-358.

Nriagu, J. O. (1996). A history of global metal pollution. Science, 271, 223.

Ochai, E.L. (1987). General principles of biochemistry of the elements. Plenum Press, New York.

Pan, R., Cao. L and R. Zhang (2010) Combined effects of Cu, Cd, Pb and Zn on

the growth and uptake of consortium of Cu resistant Penicillium sp. Al and Cd-resistant Fusarium sp. A19. Jour. Hazard. Mat., 171, 761-766.

Ramasamy, R.K. Conyeevaram, S. and K. Thamaraiselvi (2011). Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb(II) ions and fungal protein molecular characterization- a mycoremediation approach. Asian J. Exp. Biol. Sci., 2: 342-347.

Ramteke, P.W. (2003). Microbial bioremediation of heavy metals. In "Biotechnology in Environmental Management" (Ghosh, T. K., Chakarbarti, T. and G. Tripathieds.) A. P. H. Publishing Corporation; pp. 529-561.

Rani, M.J., Hemambika, B., Hemapriya, J. and V.R. Kannan (2008). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Afr. J. Env. Sei. Tech., 4, 77- 83.

Salmons, W. and U. Forstner (1984). Metals in the hydrocycle. Springer Verlag, New York. Plant Sci., 137, 1-12.

Settle, D. M. and C. C. Patterson (1980) Lead in albacore: guide to lead pollution in America. Science, 207, 1167

Shallari, S., Schwartz, Z., Hasko, A. and J.L. Moral (1998). Heavy metal in soil and plants of serpentine and industrial sites of Albanin. Sci. Total Environ., 209, 133-142

Sharma, R. (2005). Effect of fungal pretreatment on the capacity of Parthenium stem biomass to adsorb certain dyes. M.Sc. Project report of Industrial Biotechnology, C.C.S. University. Meerut, India.

Singh, V. K. (2001) Opportunities and role of microbial resources in small ruminants production Important Microorganisms and use of Potential Molecular Tools for their Identification. NBAIM, IARI, New Delhi, Pp: 29-29.

Smith, C.J., Hopmans, P. and F.J. Cook (1996). Accumulation of Cr, Pb, Cu, Ni, Zn

and Cd in soil following irrigation with treated urban effluent in Australia. Environ. Pollu., 91, 317-323.

Son, B.C., Park, K., Song, S. H. and J. Y. Young (2004). Selective biosorption of mixed heavy metal ions using polysaccharides. Korean J. Chem. Eng., 21, 1168-1172.

Standberg. G.M., Shumate, S.E. and J.R. Parrott (1981). Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Entron. Microbiol., 41, 237-245.

Sutherland, C. and C. Venkobachar (2010). A diffusion-chemisorption kinetic model for simulating biosorption using forest macro fungus, Fomes fasciatus. Inter. Res. J. Plant Sci., 1, 107-117.

Swami, D. and D. Buddhi (2006). Remval of contaminants from industrial waste water through various non-conventional technologies, International J. Env. and Pollution., 27, 2-3.

Verkleji, J. A. C. (1993) The effects of heavy metal stress on higher plants and their use as biomonitors. In "Plants as bioindicators of heavy metals in the terrestrial environment" (Marhert, B. ed.), VCH New York; pp. 415- 424.

Wang, J. and C. Chem (2009). Biosorbent for heavy metals removal and their future. Biotechnol. Adv., 27(2), 195-226.

Wintz, H., Fox, T. and C. Vuly (2002). Functional genomics and gene regulation in biometals research. Biochem. Soc., 30, 766- 768.

Zantopoulos, N., Antoniou, and E. Nikolaidis (1999). Copper, zinc, cadmium and lead in sheep grazing in North Greece. Bull. Environ. Contamin. Toxicol., 62, 691-699.

Zapotoazny, S. Jurkiewicz, A., Tylko, G. and K. Tarnau (2007). Accumulation of copper by Acremonium pink estoniae. Microbiological Res., 162, 219-228.

Published

2023-06-18

How to Cite

Arora, V., Bithel, N., & Singh, R. (2023). A Study on Heavy Metal Sources and Pollution: Challenge to Biological and Ecosystem . Bulletin of Pure & Applied Sciences- Botany, 42(1), 44–49. https://doi.org/10.48165/bpas.2023.42B.1.7