An Overview on Paddy Crop Residue Decomposition: A Biochemical Analysis of the Process

Authors

  • Rimpi Department of Bio-Sciences and Technology, Maharhishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
  • Mukesh Kumar Department of Bio-Sciences and Technology, Maharhishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
  • Atul Sharma Department of Bio-Sciences and Technology, Maharhishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
  • Rajeev Kumar Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144001, India.
  • Raj Singh Department of Bio-Sciences and Technology, Maharhishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India

DOI:

https://doi.org/10.48165/bpas.2023.42B.1.5%20

Keywords:

Paddy, Polymer, Straw, Biochemical, Cellulose, Lignin, Hemicellulose

Abstract

The most common crop in India is rice, which is grown on 43 million planted  hectares and produces 746 million tones of grain annually. Due to the fact that  straw accounts for 50% of the dry weight of the rice plant, a tremendous  amount of straw is produced as a byproduct of rice farming each year. We  produce 65% of our biomass on land, according to estimates. Lignin is the most  prevalent natural polymer of that biomass after cellulose and a significant  renewable supply of aromatic carbon on earth. Since lignin, cellulose, and  hemicelluloses make up the structural elements of higher land plant vascular  tissues, the biodegradation of these elements is a crucial step in the recycling of  terrestrial biosynthetic carbon. This study focus on biochemical analysis of  decomposition of paddy straw and find out different fungi present in soil after  decomposition.  

Downloads

Download data is not yet available.

References

Abalos, D., Sanz-Cobena, A., Misselbrook, T., & Vallejo, A. (2012). Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere, 89(3), 310-318.

Abdallah, M., Helal, E. A., &Fouda, A. S. (2006). Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution. Corrosion science, 48(7), 1639-1654.

Adler, E. (1977). Lignin chemistry—past, present and future. Wood science and technology, 11(3), 169-218.

Asina, F. N. U., Brzonova, I., Kozliak, E., Kubátová, A., & Ji, Y. (2017). Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 77, 1179-1205.

Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi. Illustrated genera of imperfect fungi., (3rd ed).

Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., ... & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource technology, 101(13), 4767-4774.

Chandra, R. P., Bura, R., Mabee, W. E., Berlin, D. A., Pan, X., & Saddler, J. N. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?. Biofuels, 67-93.

Chaturvedi, N. K. (2022). Comparison of available treatment techniques for hazardous aniline-based organic contaminants. Applied Water Science, 12(7), 173.

Collins, D. W., Maydew, E. L., & Weiss, I. S. (1997). Changes in the value-relevance of earnings and book values over the past forty years. Journal of accounting and economics, 24(1), 39-67.

Collins, P. J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63(9), 3444-3450.

Cui, L., Wang, Z., Zeng, Y., Yang, N., Liu, M., Zhao, Y., & Zheng, Y. (2022). Lignin

Biodegradation and Its Valorization. Fermentation, 8(8), 366.

Dolphin, D., Nakano, T., Maione, T. E., Kirk, T. K., & Farrel, R. (1987). Lignin Enzymic and Microbial Degradation. Paris, 157-162.

Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T., & Kvesitadze, G. (2008). Lentinusedodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid state fermentation of lignocellulosic wastes of different composition. Bioresource technology, 99(3), 457-462.

Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4- hydroxynonenal, malonaldehyde and related aldehydes. Free radical Biology and medicine, 11(1), 81-128.

Fu, B., Chen, L., Huang, H., Qu, P. &Wei, Z. (2021). Impacts of crop residues on soil health: a review. Environmental Pollutants and Bioavailability, 33 (1), 164–173.

Fu, B., Chen, L., Huang, H., Qu, P., & Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollutants and Bioavailability, 33(1), 164-173.

Gadde, B., Bonnet, S., Menke, C. & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution,

(5), 1554-1558.

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818.

Goyal, A., Ghosh, B., & Eveleigh, D. (1991). Characteristics of fungal cellulases. Bioresource Technology, 36(1), 37- 50.

Grzyb, A., Wolna-Maruwka, A. & Niewiadomska, A. (2020). Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy, 10(12), 1951.

Haris, M., Hamid, Y., Usman, M., Wang, L., Saleem, A., Su, F., Guo, J. & Li, Y. (2021). Crop-residues derived biochar: Synthesis, properties, characterization and application for the removal of trace elements in soils. Journal of Hazardous Materials, 416, 126212.

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of

lignocellulosic biomass. Bioresource technology, 100(1), 10-18.

Iranmahboob, J., Nadim, F., & Monemi, S. (2002). Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and bioenergy, 22(5), 401-404.

Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2007). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3-4), 304-315.

Keller, K. L. (2003). Brand synthesis: The multidimensionality of brand knowledge. Journal of consumer research, 29(4), 595-600.

Knežević, A., Milovanović, I., Stajić, M., Lončar, N., Brčeski, I., Vukojević, J., & Ćilerdžić, J. (2013). Lignin degradation by selected fungal species. Bioresource Technology, 138, 117-123.

Koduri, R. S., & Tien, M. (1994). Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry, 33(14), 4225-4230.

Kroon, P. A., Garcia-Conesa, M. T., Fillingham, I. J., Hazlewood, G. P., & Williamson, G. (1999). Release of ferulic acid dehydrodimers from plant cell walls by feruloylesterases. Journal of the Science of Food and Agriculture, 79(3), 428-434.

Lechner, B. E., & Papinutti, V. L. (2006). Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinustigrinus on wheat straw. Process Biochemistry, 41(3), 594-598.

Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Fuel ethanol from cellulosic biomass. Science, 251(4999), 1318- 1323.

Martinez, A. (2002). An introduction to semiclassical and microlocal analysis (Vol. 994, p. 1872698). New York: Springer.

Muaaz-Us-Salam, S., Cleall, P. J., & Harbottle, M. J. (2020). Application of enzymatic and bacterial biodelignification systems for enhanced breakdown of model lignocellulosic wastes. Science of the Total Environment, 728, 138741.

Mussoline, W., Esposito, G., Giordano, A., & Lens, P. (2013). The anaerobic digestion of

rice straw: a review. Critical Reviews in Environmental Science and Technology, 43(9), 895-915.

Nieves, J. W., Komar, L., Cosman, F., & Lindsay, R. (1998). Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. The American journal of clinical nutrition, 67(1), 18-24.

Niu, J., Li, X., Qi, X., & Ren, Y. (2021). Pathway analysis of the biodegradation of lignin by Brevibacillus thermo ruber. Bioresource Technology, 341, 125875.

Okano, K., Kitagawa, M., Sasaki, Y., & Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal feed science and technology, 120(3-4), 235-243.

Pandey, A.K., Gaind, S., Ali, A. & Nain, L. (2009). Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation, 20 (3), 293-306.

Periyasamy, S., Isabel, J. B., Kavitha, S., Karthik, V., Mohamed, B. A., Gizaw, D. G., ... & Aminabhavi, T. M. (2023). Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol–A review. Chemical Engineering Journal, 453, 139783.

Prasad, R. K., Chatterjee, S., Mazumder, P. B., Gupta, S. K., Sharma, S., Vairale, M. G., ... & Gupta, D. K. (2019). Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere, 231, 588-606.

Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S. & Pant, D. (2020). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource technology, 303, 122964.

Preston-Thomas, H. (1990). The International Temperature Scale of 1990 (ITS-90). metrologia, 27(1), 3-10.

Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource technology, 101(24), 9624-9630.

Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: amplifiers, silencers or tuners of the

inflammatory response?. Trends in immunology, 23(6), 313-320.

Rathour, R. K., Devi, M., Dahiya, P., Sharma, N., Kaushik, N., Kumari, D., ...& Bhatia, R. K. (2023). Recent trends, opportunities and challenges in sustainable management of rice straw waste biomass for green biorefinery. Energies, 16(3), 1429.

Rodrigues, M. L., Nimrichter, L., Oliveira, D. L., Nosanchuk, J. D., & Casadevall, A. (2008). Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules?. Lipid insights, 2, LPI-S1000.

Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances, 27(2), 185-194.

Saratale, G. D., Chen, S. D., Lo, Y. C., Saratale, R. G., & Chang, J. S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation–a review.

Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable energy, 37(1), 19-27.

Satlewal, A., Agrawal, R., Bhagia, S., Das, P., &Ragauskas, A. J. (2018). Rice straw as a feedstock for biofuels: availability, recalcitrance, and chemical properties. Biofuels, Bioproducts and Biorefining, 12(1), 83-107.

Silva J. P., Ticona A., Hamann P., Quirino B. F., Noronha E. F. (2021). Deconstruction of lignin: from enzymes to microorganisms. Molecules 26, 2299.

Silva, J. P., Ticona, A. R., Hamann, P. R., Quirino, B. F., & Noronha, E. F. (2021). Deconstruction of lignin: from enzymes to microorganisms. Molecules, 26(8), 2299.

Silva, M. J., Jia, T., Samandar, E., Preau Jr, J. L., & Calafat, A. M. (2013). Environmental exposure to the plasticizer 1, 2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in US adults (2000—2012). Environmental research, 126, 159-163.

Singh, R. K., Gautam, M., Gautam, S., Oraon, D., & Alam, Z. (2022). A Review on decomposition of Paddy Straw Improved Soil Health in Chatra District, India. Research Highlights in Agricultural Sciences Vol. 5, 47- 54.

Steffen, P. J. C. (2003). How long have we been in the Anthropocene era?. Climatic Change, 61(3), 251.

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.

Ten Have, R., & Teunissen, P. J. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical reviews, 101(11), 3397-3414.

Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource technology, 72(2), 169-183.

Valdespino-León, M., Calderón-Domínguez, G., De La Paz Salgado-Cruz, M., Rentería Ortega, M., Farrera-Rebollo, R. R., Morales Sánchez, E., ...& Terrazas-Valencia, F. (2021). Biodegradable electrosprayed pectin films: An alternative to valorize coffee mucilage. Waste and Biomass Valorization, 12, 2477-2494.

Wahdan, S. F. M., Ji, L., Schädler, M., Wu, Y. T., Sansupa, C., Tanunchai, B., ... &

Purahong, W. (2023). Future climate conditions accelerate wheat straw decomposition alongside altered microbial community composition, assembly patterns, and interaction networks. The ISME Journal, 17(2), 238-251.

Winquist, F. (2008). Voltammetric electronic tongues–basic principles and applications. Microchimica Acta, 163, 3-10.

Worrall, J. J., Anagnost, S. E., &Zabel, R. A. (1997). Comparison of wood decay among diverse lignicolous fungi. Mycologia, 89(2), 199-219.

Xu, J., Zhao, X., Wang, Z., Xu, H., Hu, J., Ma, J., & Liu, Y. (2019). Biodegradable natural pectin-based flexible multilevel resistive switching memory for transient electronics. Small, 15(4), 1803970.

Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M., & Zhang, X. (2020). A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 76, 100788.

Published

2023-06-18

How to Cite

Rimpi, Kumar, M., Sharma, A., Kumar, R., & Singh, R. (2023). An Overview on Paddy Crop Residue Decomposition: A Biochemical Analysis of the Process . Bulletin of Pure & Applied Sciences- Botany, 42(1), 27–35. https://doi.org/10.48165/bpas.2023.42B.1.5