Some relations on ultraspherical matrix polynomials ∗
DOI:
https://doi.org/10.48165/Keywords:
Functional matrix calculus, Hermite, Laguerre, Ultraspherical, matrix polynomialsAbstract
The main aim of this work is to give a different approach to the proof of some properties for Ultraspherical matrix polynomials (UMPs). We obtain the connections be tween Laguerre, Hermite and Ultraspherical matrix polynomials. Some definitions of new families of Ultraspherical matrix polynomials are given. Finally, various families of linear, bilinear and bilateral generating matrix functions (GMFs) for UMPs are given.
References
Akta¸s, R. and Altin, A. (2013).: A class of multivariable polynomials associated with Humbert polynomials, Hacettepe Journal of Mathematics and Statistics, 42(4), 359–372. [2] Altin, A., Akta¸s, R. and C¸ ekim, B. (2013). On a multivariable extension of the Hermite and related polynomials, Ars Combinatoria, 110, 487–503.
Akta¸s, R., S¸ahin, R. and Altin, A. (2011). On a multivariable extension of the Humbert polyno mials, Applied Mathematics and Computation, 218, 662–666.
Akta¸s, R., C¸ ekim, B. and C¸ evik, A. (2013). Extended Jacobi matrix polynomials, Utilitas Mathe matica, 92, 47–64.
Akta¸s, R., C¸ ekim, B. and S¸ahin, R. (2012). The matrix version for the multivariable Humbert polynomials, Miskolc Mathematical Notes, 13(2), 197–208.
C¸ ekim, B., Altin, A. and Akta¸s, R. (2013). Some new results for Jacobi matrix polynomials, Filomat, 27(4), 713–719.
Defez, E. and J´odar, L. (1998). Some applications of the Hermite matrix polynomials series ex pansions, Journal of Computational and Applied Mathematics, Vol. 99, No. 1-2 (1998), 105–117.
Ultraspherical matrix polynomials ... 635
Defez, E. and J´odar, L.: Chebyshev matrix polynomials and second order matrix differential equations, Utilitas Mathematica, 61, 107–123.
Erku¸s-Duman, E. and C¸ ekim, B. (2014). New generating functions for Konhauser matrix polyno mials, Communications Faculty of Sciences University of Ankara Series A 1: Mathematics and Statistics, 63(1), 35–41.
J´odar, L. and Cort´es, J.C. (1998). Some properties of Gamma and Beta matrix functions, Applied Mathematics Letters, 11(1), 89–93.
J´odar, L. and Company, R. (1996). Hermite matrix polynomials and second order matrix differ ential equations, J. Approx. Theory Appl., 12, 20–30.
J´odar, L., Company, R. and Navarro, E. (1994). Laguerre matrix polynomials and system of second order differential equations, Appl. Num. Math., 15, 53–63.
J´odar, L., Company, R. and Ponsoda, E. (1995). Orthogonal matrix polynomials and systems of second order differential equations, Diff. Equations Dynam. Syst., 3, 269–288. [14] Shehata, A. (2014). On Rice’s matrix polynomials, Afrika Matematika, 25(3), 757–777. [15] Shehata, A. (2016). Some relations on Konhauser matrix polynomials, Miskolc Mathematical Notes, 17(1), 605–633.
Shehata, A. (2015). On modified Laguerre matrix polynomials, Journal of Natural Sciences and Mathematics, 8(2), 153–166.
Shehata, A. (2016). A new kind of Legendre matrix polynomials, Gazi University Journal of Science, 29(2), 535–558.
Shehata, A. (2015). Connections between Legendre with Hermite and Laguerre matrix polynomi als, Gazi University Journal of Science, 28(2), 221–230.
Shehata, A. (2013). A Study of Some Special Functions and Polynomials, Lap Lambert Academic Publishing GmbH and Co. KG, Heinrich-B¨ocking-Str. 6-8, 66121, Saarbr¨ucken, Germany. [20] Shehata, A. and Bhukya, R. (2013). On Ultraspherical matrix polynomials and their properties, Bulletin of the Malaysian Mathematical Sciences Society, ... http://math.usm.my/bulletin/pdf/acceptedpapers/2013-06-028-R2.pdf
Ta¸sdelen, F., C¸ ekim, B. and Akta¸s, R. (2011). On a multivariable extension of Jacobi matrix polynomials, Computers and Mathematics with Applications, 61, 2412–2423.
Upadhyaya, Lalit Mohan and Shehata, A. (2015). A new extension of generalized Hermite matrix polynomials, Bulletin Malaysian Mathematical Sci. Soc., 38(1), 165–179.
Varma, S., C¸ ekim, B. and Ta¸sdelen, F. (2011). On Konhauser matrix polynomials, Ars Combina toria, 100, 193–204.
Varma, S. and Ta¸sdelen F. (2011). Biorthogonal matrix polynomials related to Jacobi matrix polynomials, Computers and Mathematics with Applications, 62, 3663–3668.