1− Uniform ideals in N− groups ∗

Authors

  • S Bhavanari Satyanarayana Bhavanari, Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522510, India.
  • S P Kuncham Department of Mathematics, Manipal Institute of Technology, MAHE Manipal-576104, India.
  • V R Paruchuri Department of Mathematics, Andhra Loyola College (Autonomous), Vijayawada-520008, India.
  • M Bhavanari Institute of Energy Engineering, Department of Mechanical Engineering, National Central University Jhongli, Taoyuan, Taiwan-32001, Republic of China.

DOI:

https://doi.org/10.48165/

Keywords:

H− essential ideal, strictly essential ideal, 0−uniform ideal, 1−uniform ideal

Abstract

In this paper, we consider N−groups and explore the notions H− essential and strictly essential ideals of an N−group G. We prove the elementary properties of essential ideals and strictly essential ideals which are closed under finite intersections and transitive closures. Further, we study the notions i−uniform (i = 0, 1) ideals of an N− -group G. We provide necessary examples of each of these notions, and examined the cases wherein these two concepts coincide. 

References

Anderson F.W. and Fuller K.R. (1974). Rings and Categories of Modules, Springer–Verlag, New York.

Camillo V. and Zelmanowitz J. (1978). On the dimension of a sum of modules, Communications in Algebra, 6(4), 345–352.

Camillo V. and Zelmanowitz J. (1980). Dimension modules, Pacific J.. Math., 91(2), 249–261. [4] Ferrero C.C. and Ferrero G. (2002). Nearrings: Some developments linked to semigroups and groups, The Netherlands, Amsterdam; Kluwer Academic Publishers.

Fleury P. (1974). A Note on Dualizing Goldie Dimension, Canadian. Math. Bull., 17(4). [6] Meldrum J. D.P. (1985). Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston-London-Melbourne.

Oswald A. (1974). Near-rings in which every N− group is prinicpal, Proc. London Math. Soc. 28 (3) , 67–88.

Pilz G. (1983). Nearrings, North Holland, Amsterdam.

Reddy Y.V. and Satyanarayana, Bh. (1986). ”The f− prime radical in nearrings, Indian J. Pure Appl. Math., 17, 327–330.

Reddy Y.V. and Satyanarayana, Bh. (1987). A note on modules, Proc. Japan Academy, Series 6, 63, 208–211.

Reddy Y.V. and Satyanarayana, Bh. (1988). A note on N− groups, Indian J. Pure Appl. Math., 19, 842 – 845.

Satyanarayana, Bh. (1982). Tertiary decomposition in Noetherian N− groups, Communications in Algebra, 10, 1951 – 1963.

Satyanarayana, Bh. (1984). Primary decomposition in Noetherian nearrings, Indian J. Pure Appl. Math., 15, 127–130.

Satyanarayana, Bh. (1984). Contributions to nearring theory, Doctoral Dissertation, Acharya Na garjuna University, India.

Satyanarayana, Bh. (1988). A Note on E− direct and S− inverse systems, Proc. of the Japan Academy, 64-A, 292–295.

Satyanarayana, Bh. (1989). The injective hull of a module with FGD, Indian J. Pure Appl. Math., 20, 874–883.

Satyanarayana, Bh. (1994). Modules with finite spanning dimension, J. Australian Math. Soc. (Series A), 57, 170–178.

Satyanarayana, Bh. (1990). On modules with finite Goldie dimension, ıJ. Ramanujan Math. Soc., 5, 61– 75.

Satyanarayana, Bh. (1995). On Essential E− irreducible submodules, Proc., 4thRamanujan sym posium on Algebra and its Applications, University of Madras Feb. 1–3, 1995, 127–129. [20] Satyanarayana, Bh. (2010). Contributions to Near-ring Theory, VDM VerlagDr Muller, Germany, (ISBN 978-3-639-22417-7).

Satyanarayana, Bh. and Koteswara Rao, G. (1993). On a class of modules and N− groups, J. of Indian Math. Soc., 59, 39 – 44.

− Uniform ideals in N− groups 591

Satyanarayana, Bh. and Syam Prasad, K. (1998). A result on E− direct systems in N− groups, Indian J. Pure Appl. Math., 29, 285 – 287.

Satyanarayana, Bh. and Syam Prasad, K. (2000). On direct and inverse systems in N− groups, Indian J. Math. (B.N. Prasad Birth Commemoration Volume), 42, 183–192.

Satyanarayana, Bh. and Syam Prasad, K. (2005). Linearly independent elements in N− groups with finite Goldie dimension, Bulletin of the Korean Mathematical Society, 42(3), 433–441. [25] Satyanarayana, Bh. and Syam Prasad, K. (2005). On finite Goldie fimension of Mn (N) - group Nnin the book ‘Nearrings and Nearfields (Editors: Hubert Kiechle, Alexan der Kreuzer and MommeJohs Thomsen), (Proc. 18th International Conference on Nearrings and Nearfields, Universitat Bundeswar, Hamburg, Germany July 27-Aug 03, 2003), Springer Verlag, Netherlands, 301–310.

Satyanarayana, Bh. and Syam Prasad, K. (2014). Discrete Mathematics and Graph Theory (Sec ond Edition), Prentice Hall India Learning Ltd. ISBN 978-81-203-4948-3.

Satyanarayana, Bh., Syam Prasad, K. and Nagaraju D. (2006). A theorem on modules with finite Goldie dimension, Soochow Journal of Mathematics, 32 (2), 311 –315.

Satyanarayana, Bh., Syam Prasad, K. Venugopala Rao, P. and Mallikarjuna, B. (2019). A note on dimensions in N− groups, accepted, Italian Journal of Pure and Applied Mathematics (2019). [29] Syam Prasad, K. and Satyanarayana, Bh. (2011). Finite Dimension in N− Groups and Fuzzy Ideals of Gamma Nearrings, VDM Verlag, Germany (ISBN: 978-3-639-36838-3). [30] Satyanarayana, Bh. and Syam Prasad, K. (2013). Near Rings, Fuzzy Ideals, and Graph Theory, Chapman and Hall, Taylor and Francis Group, London and New York (ISBN 13: 9781439873106). [31] Syam Prasad, K. (2000). Contributions to Nearring Theory II, Doctoral Dissertation, Acharya Nagarjuna University, India, 2000.

Syam Prasad, K., Srinivas, K.B., Harikrishnan, P.K. and Satyanarayana, Bh. (2017). Nearrings, Nearfields and Related Topics, World Scientific, Singapore, (ISBN: 978-981-3207-35-6).

Published

2019-12-24

How to Cite

Bhavanari, S., Kuncham, S.P., Paruchuri, V.R., & Bhavanari, M. (2019). 1− Uniform ideals in N− groups ∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 38(2), 586–591. https://doi.org/10.48165/