NON HOMOGENEOUS ON THE BINARY QUADRATIC EQUATION 4 x 2  3 y 2  37

Authors

  • S Vidhyalakshmi Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu 620002, India.
  • E Premalatha Assistant Professor, Department of Mathematics, National College, Trichy, Tamil Nadu 620001, India.
  • D Maheshwari Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy Tamil Nadu 620002, India.

DOI:

https://doi.org/10.48165/

Keywords:

Non homogeneous, binary quadratic, Pell-like equation, hyperbola, parabola, integral solutions, Special numbers

Abstract

This paper deals with the problem of obtaining non-zero distinct integer solutions to the non homogeneous binary quadratic equation represented by the Pell-like equation 4 x2 - 3 y2 = 37. Different sets of integersolutions are presented. Employing the solutions of the above equation, integer solutions for other choices of hyperbolas and parabolas are obtained. A special Pythagorean triangle is also determined.

References

. Banumurthy, T.S. (1995). A Modern Introduction to Ancient Indian Mathematics, Wiley Eastern Limited, London.

. Carmichael, R.D. (1950). The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.

. Dickson, L.E. (1952). History of The Theory of Numbers, Vol. II, Chelsea Publishing Co, New York.

. Mordell, L.J. (1969). Diophantine Equations, Academic Press, London.

. Nigel, P. Smart. (1999). The Algorithm Resolutions of Diophantine eqations, Cambridge University Press, London.

. Telang , S.G. (1996). Number theory, Tata Mc Graw-Hill Publishing Company, New Delhi. [7]. Gopalan, M.A., and Parvathy, G. (2010). Integral Points On The Hyperbola

x2  4xy  y2  2x 10 y  24  0 , Antarctica J. Math., Vol. 1(2), 149-155.

. Gopalan, M.A., Gokila, K., and Vidhyalakahmi, S. (2007). On the Diophantine Equation

x 2  4xy  y 2  2x  2 y  6  0 , Acta Ciencia Indica, Vol.XXXIIIM No2, 567-570. [9]. Gopalan, M.A., Vidhyalakahmi, S. and Devibala, S. (2007). On The Diophantine Equation

x 2  xy  14 , Acta Ciencia Indica,Vol.XXXIII M.No2, 645-646.

. Gopalan, M.A. and Janaki, G. (2008). Observations on x 2  y 2  x  y  xy  2 ,

Impact J. Sci. Tech., Vol. 2(3), 143-148.

. Gopalan, M.A., Shanmuganadham, P., and Vijayashankar, A. (2008). On Binary Quadratic Equation

x 2  5xy  y 2  8x  20y  15  0 , Acta Ciencia Indica, Vol. XXXIVM, No.4, 1803-1805.

. Mollion, R.A. (1998). All Solutions of the Diophatine Equations

Sci., Special Volume, Part III, 257-293.

X 2  DY 2  n , Far East J. Math.

. Gopalan. M.A, Vidhyalakahmi.S, Premalatha.E and Vanitha.M (2016). Observation on the hyperbola

y 2  220 x 2  9 , Star Research Journal, Vol.4, issue 3(2), 6-10, March 2016.

. Gopalan. M.A, Vidhyalakahmi.S, Premalatha. E. and Sofia Christinal, S. (2016). On the negative pell

equationy 2  72x2  8 , International Journal of Emerging Technologies in Engineering Research,Vol 4,issue 2, 25-28, Feb 2016.

. Gopalan, M.A, Vidhyalakahmi, S., Premalatha, E. and Janani, R. (2016). On the negative Pell equation y2  33x2  8 , International Journal of Multidisciplinary Research and Modern Education, Vol 2, Issue 1, 95-100.

. Gopalan, M.A, Vidhyalakahmi, S. and Premalatha, E. (2014). On the non-homogeneous binary

quadratic equation

x2  3xy  y 2  2x  0 , International Journal of Engineering & Scientific

Research, Vol. 2, Issue 2, 83-88.

. Gopalan, M.A, Vidhyalakahmi, S. and Premalatha, E. (2012). Observations On the Binary Quadratic

Diophantine Equation

y2  8x2  8x  16 , International Journal Of Latest Research in Science

and Technology,Vol.1, No. 4, 379-382.

Published

2019-06-14

How to Cite

Vidhyalakshmi, S., Premalatha, E., & Maheshwari, D. (2019). NON HOMOGENEOUS ON THE BINARY QUADRATIC EQUATION 4 x 2  3 y 2  37. Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 38(1), 324–328. https://doi.org/10.48165/