NON HOMOGENEOUS ON THE BINARY QUADRATIC EQUATION 4 x 2 3 y 2 37
DOI:
https://doi.org/10.48165/Keywords:
Non homogeneous, binary quadratic, Pell-like equation, hyperbola, parabola, integral solutions, Special numbersAbstract
This paper deals with the problem of obtaining non-zero distinct integer solutions to the non homogeneous binary quadratic equation represented by the Pell-like equation 4 x2 - 3 y2 = 37. Different sets of integersolutions are presented. Employing the solutions of the above equation, integer solutions for other choices of hyperbolas and parabolas are obtained. A special Pythagorean triangle is also determined.
References
. Banumurthy, T.S. (1995). A Modern Introduction to Ancient Indian Mathematics, Wiley Eastern Limited, London.
. Carmichael, R.D. (1950). The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.
. Dickson, L.E. (1952). History of The Theory of Numbers, Vol. II, Chelsea Publishing Co, New York.
. Mordell, L.J. (1969). Diophantine Equations, Academic Press, London.
. Nigel, P. Smart. (1999). The Algorithm Resolutions of Diophantine eqations, Cambridge University Press, London.
. Telang , S.G. (1996). Number theory, Tata Mc Graw-Hill Publishing Company, New Delhi. [7]. Gopalan, M.A., and Parvathy, G. (2010). Integral Points On The Hyperbola
x2 4xy y2 2x 10 y 24 0 , Antarctica J. Math., Vol. 1(2), 149-155.
. Gopalan, M.A., Gokila, K., and Vidhyalakahmi, S. (2007). On the Diophantine Equation
x 2 4xy y 2 2x 2 y 6 0 , Acta Ciencia Indica, Vol.XXXIIIM No2, 567-570. [9]. Gopalan, M.A., Vidhyalakahmi, S. and Devibala, S. (2007). On The Diophantine Equation
x 2 xy 14 , Acta Ciencia Indica,Vol.XXXIII M.No2, 645-646.
. Gopalan, M.A. and Janaki, G. (2008). Observations on x 2 y 2 x y xy 2 ,
Impact J. Sci. Tech., Vol. 2(3), 143-148.
. Gopalan, M.A., Shanmuganadham, P., and Vijayashankar, A. (2008). On Binary Quadratic Equation
x 2 5xy y 2 8x 20y 15 0 , Acta Ciencia Indica, Vol. XXXIVM, No.4, 1803-1805.
. Mollion, R.A. (1998). All Solutions of the Diophatine Equations
Sci., Special Volume, Part III, 257-293.
X 2 DY 2 n , Far East J. Math.
. Gopalan. M.A, Vidhyalakahmi.S, Premalatha.E and Vanitha.M (2016). Observation on the hyperbola
y 2 220 x 2 9 , Star Research Journal, Vol.4, issue 3(2), 6-10, March 2016.
. Gopalan. M.A, Vidhyalakahmi.S, Premalatha. E. and Sofia Christinal, S. (2016). On the negative pell
equationy 2 72x2 8 , International Journal of Emerging Technologies in Engineering Research,Vol 4,issue 2, 25-28, Feb 2016.
. Gopalan, M.A, Vidhyalakahmi, S., Premalatha, E. and Janani, R. (2016). On the negative Pell equation y2 33x2 8 , International Journal of Multidisciplinary Research and Modern Education, Vol 2, Issue 1, 95-100.
. Gopalan, M.A, Vidhyalakahmi, S. and Premalatha, E. (2014). On the non-homogeneous binary
quadratic equation
x2 3xy y 2 2x 0 , International Journal of Engineering & Scientific
Research, Vol. 2, Issue 2, 83-88.
. Gopalan, M.A, Vidhyalakahmi, S. and Premalatha, E. (2012). Observations On the Binary Quadratic
Diophantine Equation
y2 8x2 8x 16 , International Journal Of Latest Research in Science
and Technology,Vol.1, No. 4, 379-382.