ANGELIC PARACOMPACT SPACES
DOI:
https://doi.org/10.48165/Keywords:
Angelic spaces, Paracompact spaces, Web compact spaces, Angelic paracompact spaces, Web-paracompact spacesAbstract
In this paper, we introduce the new concept of angelic paracompact spaces and angelic on web paracompact spaces and discuss some of their properties. Further we prove that every relatively countably paracompact subset of Cp(x) is relatively paracompact.
References
. Bourgain, J,Fermlin, D.H. and Talagrand, M. (1978). Pointwise compact sets of Baire-measurable functions, Amer.J.Math., 100, 845-886.
. Cascales, B. and Orihuela,J. (1987). On compactness in Locally convex spaces, Mathematische Zeitschrift @ Springer-Verlag, 195, 365-381.
. Chasco, M.J, Martin-Peinador,E. and Tarieladze,V. (2007). A Class of angelic sequential non-Frechet Urysohn topological groups, Topology and its Applications, 154, 741-748.
. Eberlein, W.F. (1947). Weak compactness in Banach spaces I, Proc. Nat. Acad. Sci. USA, 33 51-53. [5]. Floret, K. (1980). Weakly compact sets, Lecture Notes in Mathematics 80, Springer, Berlin. [6]. Grothendieck, A. (1952).Criteres de compacitedans les espacesfontionnelsgeneraux, Amer.J.Math., 74, 168-186.
. Konig, Heinz and Kuhn,Norbert (1987). Angelic Spaces and the double limit relation, J. London Math. Soc., 35(2), 454-470.
. Munkres ,James R. (2002). Topology, Second Edition, Pearson Education Pte. Ltd., Singapore. [9]. Orihuela, Jose (1987). Pointwise Compactness in Spaces of continuous functions, J. London Math. Soc., 36(2), 143-152.
. Philips, R.S. (1943).On weakly compact subsets of a Banach space, Am. J. Math., 65, 108-136. [11]. Smulian,V.L. (1940). Uber linearetopologischeRaume, Math. Sb. N.S., 7(49), 425-448. [12]. Khurana, Surjit Singh (1978). Vector- Valued Continuous Functions with Strict topologies and Angelic
topological spaces, Proceedings of the American Mathematical Society, Volume 69, Number 1, 34- 36.April 1978.
. Young, N.J. (1973). Compactness in Function Spaces, Another proof of a theorem of J.D. Pryce, J. London Math .Soc., 6 (2) , 739-740.