ON THE HOMOGENEOUS CONE 2 2 2 3x − 8 y = 25z

Authors

  • M A Gopalan Professor, Department of Mathematics, SIGC, Trichy, Tamil Nadu 620002, India.
  • Sharadha Kumar M.Phil Scholar, Department of Mathematics, SIGC, Trichy, Tamil Nadu 620002, India.

DOI:

https://doi.org/10.48165/

Keywords:

Ternary quadratic, homogeneous quadratic, homogeneous cone, integer

Abstract

This paper aims at determining non-zero distinct integer solutions satisfying the homogeneous cone  represented by the ternary quadratic equation 2 2 2 3x − 8y = 25z . A few interesting relations among the  solutions are presented. A general formula for generating sequence of integer solutions to the given cone  based on a given solution is illustrated.  

References

Dickson, L.E. (1952). History of Theory of Numbers, Vol. II, Chelsea Publishing Company, New York.

Mordell, L.J. (1970). Diophantine Equations, Academic Press, New York.

Carmicheal, V. (1959). The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.

Sumathi, G. and Deebika, B. (2017). Integral Points On The Cone 2 2 2

x − 3y =16z , Journal of

Mathematics and Informatics, Vol. 11, 47-54.

Mallika, S. and Hema, D. (2017). On The Ternary Quadratic Diophantine Equation 2 2 2

y = 3x + 2z ”,

Journal of Mathematics and Informatics, Vol. 10, 157-165.

Vidhyalakshmi, S. and Yogeshwari, S. (2017). On The Non-Homogeneous Ternary Quadratic Diophantine Equation 2 2 2

x − 2y = 9z , Journal of Mathematics and Informatics, Vol. 10, 125-133.

Kavitha, A. and Sasipriya, P. (2017). A Ternary Quadratic Diophantine Equation 2 2 2

x + y = 56 z ,

Journal of Mathematics and Informatics, Vol. 11, 103-109.

Gopalan, M.A. and Vidhyalakshmi, S., and Kavitha, A. (2012). Integral points on the homogeneous cone 2 2 2

z = 2x − 7y ”, Diophantus J. Math.,1 (2), 127-136.

Gopalan, M.A., Vidhyalakshmi, S., Uma Rani, J. (2013). Integral points on the homogeneous cone 2 2 2

x + 4y = 37z , Cayley J. Math., 2(2), 101-107.

Gopalan, M.A., Sivagami, B. (2013). Integral points on the homogeneous cone 2 2 2

z = 39x + 6y ,

IOSR Journal of Mathematics, 8(4), 24-29.

Gopalan, M.A., Vidhyalakshmi, S. and Maheswari, D. (2014). Integral points on the homogeneous cone 2 2 2

x + 3y = 35z , Indian Journal of Science , Vol. 7, 6-10.

Meena, K., Vidhyalakshmi, S., Gopalan, M.A. and Aarthy Thangam, S. (2014). Integer solutions on the homogeneous cone 2 2 2

x + 3 y = 28z , Bull. Math. &Stat. Res., Vol. 2, Issue 1, 47-53.

Gopalan, M.A., Vidhyalakshmi, S. and Thiruniraiselvi, N. (2015). Observations on the ternary quadratic Diophantine equation 2 2 2

x + 9y = 50z , International Journal of Applied Research, 1(2),

-53.

Published

2019-06-12

How to Cite

Gopalan, M.A., & Kumar, S. (2019). ON THE HOMOGENEOUS CONE 2 2 2 3x − 8 y = 25z . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 38(1), 245–252. https://doi.org/10.48165/