COMPLETENESS OF HAUSDORFF INDUCED 2-FUZZY METRIC SPACE
DOI:
https://doi.org/10.48165/Keywords:
2-fuzzy Hausdorff metric, 2-fuzzy compactAbstract
In this paper the concept of completeness induced by the Hausdorff metric is studied and the 2-fuzzy compactness induced by the Hausdorff metric is also discussed.
References
. Ahmed, A., Singh, D., Sharma, M. and Singh, N. (2010). Results on Fixed point theorems in 2- fuzzy metric spaces, fuzzy 2-metric spaces using rational inequalities, International Mathematical Forum, No 5(39), 1937-1949.
. Engelking, R. (1977). General Topology, PWN-Polish Science Publishers, Warsaw. [3]. Erceg, M.A. (1979). Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69, 205-230. [4]. George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395-399.
. George, A. and Veeramani, P. (1995). Some theorems in fuzzy metric spaces, J. Fuzzy Math., 3, 933- 940.
. George, A. and Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90, 365-368.
. Gregori, V., Mascarell, J.A. and Sapena, A. (2005). On completion of fuzzy quasi-metric spaces, Topology and its Applications, 153, 886-899.
. Gregori, V. and Romaguera, S. (2000). Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, 115, 485-489.
. Gregori, V. and Romaguera, S. (2002). On completion of fuzzy metric spaces, Fuzzy Sets and Systems, 130, 399-404.
. Gregori, V. and Romaguera S. (2004). Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems, 144, 411-420.
. Kaleva, O. and Seikkala, S. (1984). On fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215-229. [12]. Kocinac, L.J.D.R. (2012). Selection properties in fuzzy metric spaces, Filomat, 26 (2), 305-312. [13]. Kramosil, I. and Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernetica, 11, 326- 334.
. Li, C.Q. (2013). On some results of metrics induced by a fuzzy ultrametric, Filomat, 27 (6), 1133- 1140.
. Li, C.Q. and Yang, Z.Q. (2014). Fuzzy ultrametric based on idempotent probability measures, J. Fuzzy Math., 22 (2), 463-476.
. Li, C.Q. (2014). Some properties of intuitionstic fuzzy metric spaces, Journal of Computational Analysis and Applications, 16 (4), 670-677.
. Park, J.H., Park Y.B. and Saadati R. (2008). Some results in intuitionistic fuzzy metric spaces, Journal of Computational Analysis and Applications, 10 (4), 441-451.
. Repovs, D., Savchenko, A. and Zarichnyi, M. (2011). Fuzzy Prokhorov metric on the of probability measures, Fuzzy Sets and Systems, 175, 96-104.
. Rodriguez-Lopez, J. and Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147, 273-283.
. Savchenko, A. and Zarichnyi, M. (2009). Fuzzy ultrametrics on the set of probability measures, Topology, 48, 130-136.
. Veeramani, P. (2001). Best approximation in fuzzy metric spaces, J. Fuzzy Math., 9, 75-80. [22]. Zadeh L.A. (1965). Fuzzy Sets, Information and Control, 8, 338-353.