ON THE SRIVASTAVA’S FUNCTION HB OF MATRIX ARGUMENTS
DOI:
https://doi.org/10.48165/Keywords:
hypergeometric functions, Srivastava’s triple hypergeometric functions, Exton’s triple hypergeometric function, matrix argument, matrix transform, real positive definite, Hermitian positive definiteAbstract
We establish some integral representations for the Srivastava’s triple hypergeometric function HB of matrix arguments which generalize some of the recent results of Choi, Hasanov and Turaev [12] for this function. We prove our results by employing the Mathai’s matrix transform technique for real symmetric positive definite matrices as arguments. Towards the end of the paper we also give the corresponding results when the argument matrices are complex Hermitian positive definite.
References
. Upadhyaya, Lalit Mohan and Dhami, H.S. (Nov.2001). Matrix Generalizations of Multiple Hypergeometric Functions; #1818, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. (Retrieved from the University of Minnesota Digital Conservancy,
http://hdl.handle.net/11299/3706 ).
. Upadhyaya, Lalit Mohan (Nov. 2003): Matrix Generalizations of Multiple Hypergeometric Functions by Using Mathai's Matrix Transform Techniques (Ph.D. Thesis, Kumaun
University, Nainital, Uttarakhand, India) #1943, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. (https://www.ima.umn.edu/sites/default/files/1943.pdf http://www.ima.umn.edu/preprints/abstracts/1943ab.pdf
http://www.ima.umn.edu/preprints/nov2003/1943.pdf
http://hdl.handle.net/11299/3955
https://zbmath.org/?q=an:1254.33008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.2172&rank=52 ).
(Retrieved from the University of Minnesota Digital Conservancy,
http://hdl.handle.net/11299/3955).
. Mathai, A.M. (1992). Jacobians of Matrix Transformations- I; Centre for Mathematical Sciences, Trivandrum, India.
. Mathai, A.M. (1993). Hypergeometric Functions of Several Matrix Arguments; Centre for Mathematical Sciences, Trivandrum, India.
. Slater, L.J. (1966). Generalized Hypergeometric Functions, Cambridge University Press, Cambridge.
. Mathai, A.M. (1997). Jacobians of Matrix Transformations and Functions of Matrix Argument. World Scientific Publishing Co. Pte. Ltd., Singapore.
. Mathai, A.M. and Provost, Serge B. (2005). Some Complex Matrix-Variate Statistical Distributions on Rectangular Matrices, Linear Algebra and its Applications, 410, 198–216. [8]. Upadhyaya, Lalit Mohan (2017). On Exton’s Triple Hypergeometric Functions of Matrix Arguments –II, Bulletin of Pure and Applied Sciences, Section-E, Mathematics & Statistics, Vol. 36(E), No.2, 207-217. (Article DOI : 10.5958/2320-3226.2017.00023.6)
https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl= 09706577&AN=128769173&h=VKjrBgoGK8zPkmFuWAH0mPQ9
http://www.indianjournals.com/ijor.aspx?target=ijor:bpasms&volume=36e&issue=2&article=013 http://www.ijour.net/ijor.aspx?target=ijor:bpasms&volume=36e&issue=2&article=013 [9]. Srivastava, H.M. (1964). Hypergeometric Functions of Three Variables, Ganita, 15, 97-108. [10]. Srivastava, H.M. (1967). Some Integrals Representing Triple Hypergeometric Functions, Rend. Circ. Mat. Palermo, (2) 16, 99-115.
. Exton, H. (1976). Multiple Hypergeometric Functions and Applications. Ellis Horwood Limited, Publishers, Chichester , Sussex, England. Halsted Press: A Divison of John Wiley & Sons, Chichester,
New York, Brisbane.
. Choi, Junesang, Hasanov, Anvar and Turaev, Mamasali (2012). Integral Representations for Srivastava’s Hypergeometric Function HB, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., Vol. 19, No. 2 (May 2012), 137-145. http://dx.doi.org/10.7468/jksmeb.2012.19.2.137
. Mathai, A.M. (1978). Some Results on Functions of Matrix Arguments, Mathematische Nachrichten, 84, 171-177.
. Srivastava, H.M. and Karlsson, P.W. (1985). Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, Publishers, Chichester, Sussex, England. Halsted Press: A Divison of John Wiley & Sons, Chichester, New York, Brisbane.