Fuzzy stability of cubic (ρ1, ρ2)-functional inequality ∗

Authors

  • Shalini Tomar Department of Mathematics, Kanya Mahavidyalaya, Kharkhoda, Sonepat, Haryana-131402, India.
  • Nawneet Hooda Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana-131039, India.

DOI:

https://doi.org/10.48165/

Keywords:

Generalized Hyers-Ulam stability(H-US), Fuzzy Normed space, Cubic (ρ1, ρ2)-functional inequality, Cubic (ρ1, ρ2)-functional equation

Abstract

 In this paper, we introduce and ratify the generalized Hyers-Ulam stability of cubic (ρ1, ρ2)-functional inequality in fuzzy normed space using the fixed point method.

References

Ulam, S.M. (1964). Problems in Modern Mathematics, Science Editions, John Wiley and Sons, New York, USA.

Aoki, T. (1950). On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2, 64–66.

Bag, T. and Samanta, S.K. (2003). Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11, 687–705.

Diaz, J.B. and Margolis, B. (1968). A fixed point theorem of the alternative for contraction on a generalized complete metric space, Bull. Amer. Math. Soc., 74, 305–309.

Fechner, W. (2006). Stability of functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 71, 149–161.

Felbin, C. (1992). Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48, 239–248. [7] Găvruta, P. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(3), 431–436.

Glányi, A. (2001). Eine zur Parallelogrammgleichungãquivalente Ungleichung, Aequationes Math., 62, 303–309.

Glányi, A. (2002). On a problem by K. Nikodem, Math. Inequal. Appl., 5, 707–710. [10] Hyers, D.H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(4), 222–224.

Katsaras, A.K.(1984). Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12, 143–154. [12] Kim, H., Lee, J. and Son, E. (2012). Approximate functional inequalities by additive mappings, J. Math. Inequal., 6, 461–471.

Luxemburg, W.A.J. (1958). On the convergence of successive approximation in the theory of ordinary differential equation, Proc. K. Ned. Aked. Wet., Ser. A., Indag. Math., 20, 540–546. [14] Mihet, D. and Radu, V. (2008). On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343, 567–572.

Mirmostafaee, A.K., Mirzavaziri, M. and Moslehian, M.S. (2008). Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159, 730–738.

Shalini Tomar and Nawneet Hooda

Park, C. (2015). Additive ρ−functional inequalities and equations, J. Math. Inequal., 9, 17–26. [17] Park, C. (2015). Additive ρ−functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9, 397–407.

Park, C., Cho, Y. and Han, M. (2007). Stability of functional inequalities associated with Jordan von Neumann type additive functional equations, J. Inequal. Appl., Art. ID 41820 (2007). [19] Rassias, Th.M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2), 297–300.

Xiao, J.Z. and Zhu, X.H. (2003). Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133, 389–399.

Published

2020-12-26

How to Cite

Tomar, S., & Hooda, N. (2020). Fuzzy stability of cubic (ρ1, ρ2)-functional inequality ∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 39(2), 302–308. https://doi.org/10.48165/