New type of neutrosophic supra connected space ∗
DOI:
https://doi.org/10.48165/Keywords:
Neutrosophic supra topology, neutrosophic α supra open set, neutrosophic α supra closed set, neutrosophic α supra connected space, neutrosophic α supra compact spaceAbstract
Neutrosophic α supra-connected space is defined and its properties are stud ied in this paper. The purpose of this theory is to investigate the common relationship between two objects after dropping an axiom in neutrosophic topological spaces. Also, defined herein is a new compactness in neutrosophic supra topological spaces and some of its properties are investigated.
References
Arokiarani, I., Dhavaseelan, R., Jafari, S. and Parimala, M. (2017). On some new notions and functions in neutrosophic topological spaces, Neutrosophic Sets Syst., 16, 16–19. [2] Atanassov, K.T. (1986). Intuitionstic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96. [3] Coker, D. (1997). An introduction to fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81–89. [4] Kuratowski, K. (1966). Topology Vol. II (transl.), Academic Press, New York. [5] Karthika, M., Parimala, M., Jafari, S., Smarandache, F., Alshumrani, Mohammad, Ozel, Cenap and Udhayakumar, R. (2019). Neutrosophic complex αψ connectedness in neutrosophic complex topological spaces, Neutrosophic Sets and Systems, 29,(2019), 158–164.
Parimala, M., Karthika, M., Jafari, Saeid, Smarandache, Florentin and El-Atik, A.A. (2020). Neutrosophic αψ-connectedness,Journal of Intelligent and Fuzzy Systems, 38, 853-ff857. [7] Parimala, M., Jafari, S. and Murali, S. (2017). Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest., 60, 3–11.
Parimala, M., Jeevitha, R., Jafari, S., Smarandache, F. and Udhayakumar, (2018). Neutro sophic αψ-homeomorphism in neutrosophic topological spaces, Information, 9, 187, 1-10. ; doi:10.3390/info9080187.
Parimala, M., Jeevitha, R. and Selvakumar, A. (2017). A new type of weakly closed set in ideal topological spaces, International Journal of Mathematics and its Applications, 5(4-C), 301–312. [10] Parimala, M., Karthika, M., Dhavaseelan, R. and Jafari, S. (2018). On neutrosophic supra pre continuous functions in neutrosophic topological spaces, New Trends in Neutrosophic Theory and Applications , 2, 371–383.
Parimala, M., Karthika, M., Jafari, S., Smarandache, F. and Udhayakumar, R. (2019). Neutro sophic nano ideal topological structures, Neutrosophic Sets and Systems, 24, 70–77. [12] Parimala, M. , Karthika, M., Jafari, S., Smarandache, F. and Udhayakumar, R. (2018). Decision-making via neutrosophic support soft topological spaces, Symmetry, 10, 1–10. doi:10.3390/sym10060217
Parimala, M. and Perumal, R. (2016). Weaker form of open sets in nano ideal topological spaces, Global Journal of Pure and Applied Mathematics, 12(1), 302–305.
Parimala, M., Smarandache, F., Jafari, S. and Udhayakumar, R. (2018). On neutrosophic αψ -closed sets, Information, 9, 103, 1–7. Neutrosophic supra connected space ... 231
Salama, A.A. and Alblowi, S.A. (2012). Neutrosophic set and neutrosophic topological spaces,
IOSR J. Math., 3, 31–35.
Smarandache, F. (2002) Neutrosophy and neutrosophic logic, First International Conference on
Neutrosophy, Neutrosophic Logic Set, Probability and Statistics, University of New Mexico, Gallup,
NM, USA, (2002).
Smarandache, F. (1999). A unifying field in logics: neutrosophic logic. Neutrosophy, Neutrosophic
Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, USA.
Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 18, 338–353.