The parameter estimation of inverse Gaussian distribution under different loss functions ∗
DOI:
https://doi.org/10.48165/Keywords:
Inverse Gaussian distribution, yesian method, quasi and inverted gamma priors, squared error, precautionary, entropy, K-loss, Al-Bayyati’s loss functionsAbstract
In this paper the Inverse Gaussian distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter are derived under squared error, precautionary entropy, K-loss, and Al-Bayyati’s loss functions by using the quasi and inverted gamma priors.
References
Pandey, H. and Rao, A.K. (2010). Bayesian estimation of scale parameter of inverse Gaussian distribution using linex loss function, J. Comp. and Math. Sci., 1(2), 171–176. [2] Chhikara, R.S. and Folks, J.L. (1989). The inverse Gaussian distribution theory, methodology and applications, Vol. 95, Marcel Dekker Inc., New York.
Zellner, A. (1986) Bayesian estimation and prediction using asymmetric loss functions, Jour. Amer. Stat. Assoc., 91, 446–451.
Basu, A.P. and Ebrahimi, N. (1991). Bayesian approach to life testing and reliability estimation using asymmetric loss function, Jour. Stat. Plann. Infer., 29, 21–31.
Norstrom, J.G. (1996). The use of precautionary loss functions in risk analysis, IEEE Trans. Reliab., 45(3), 400–403.
Calabria, R. and Pulcini, G. (1994). Point estimation under asymmetric loss functions for left truncated exponential samples, Comm. Statist. Theory and Methods, 25(3), 585–600. [7] Dey, D.K., Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation of parameters under entropy loss, Jour. Statist. Plan. and Infer., 347–363.
Dey, D.K. and Liu, Pei-San Liao (1992). On comparison of estimators in a generalized life model, Microelectron. Reliab. 32 (1 and 2), 207–221.
Wasan, M.T. (1970). Parametric Estimation, McGraw-Hill, New York.
Al-Bayyati, H.N. (2002). Comparing methods of estimating Weibull failure models using simula tion, Ph.D. Thesis, College of Administration and Economics, Baghdad University, Iraq.